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Abstract—Efficient operation of wireless networks and switches
requires using simple (and in some cases distributed) scheduling
algorithms. In general, simple greedy algorithms (known as
Greedy Maximal Scheduling, or GMS) are guaranteed to achieve
only a fraction of the maximum possible throughput (e.g., 50%
throughput in switches). However, it was recently shown that in
networks in which the Local Pooling conditions are satisfied, GMS
achieves 100% throughput. Moreover, in networks in which the
-Local Pooling conditions hold, GMS achieves throughput.
In this paper, we focus on identifying the specific network topolo-
gies that satisfy these conditions. In particular, we provide the first
characterization of all the network graphs in which Local Pooling
holds under primary interference constraints (in these networks,
GMS achieves 100% throughput). This leads to a linear-time algo-
rithm for identifying Local-Pooling-satisfying graphs. Moreover,
by using similar graph-theoretical methods, we show that in all
bipartite graphs (i.e., input-queued switches) of size up to ,
GMS is guaranteed to achieve 66% throughput, thereby improving
upon the previously known 50% lower bound. Finally, we study
the performance of GMS in interference graphs and show that
in certain specific topologies, its performance could be very bad.
Overall, the paper demonstrates that using graph-theoretical
techniques can significantly contribute to our understanding of
greedy scheduling algorithms.

Index Terms—Graph theory, Local Pooling (LoP), scheduling,
switches, throughput maximization, wireless networks.

I. INTRODUCTION

T HE EFFECTIVE operation of wireless and wireline
networks relies on the proper solution of the packet

scheduling problem. In wireless networks, the main challenge
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stems from the need for a decentralized solution to a centralized
problem. Even when centralized processing is possible, as is
the case in input-queued switches, designing low-complexity
algorithms that will enable efficient operation is a major chal-
lenge.
A centralized joint routing and scheduling policy that

achieves the maximum attainable throughput region was pre-
sented by Tassiulas and Ephremides [26]. That policy applies
to a multihop network with a stochastic packet arrival process
and is guaranteed to stabilize the network whenever the arrival
rates are within the stability region (i.e., it provides 100%
throughput). The results of [26] have been extended to various
settings of wireless networks and input-queued switches (e.g.,
[1] and [21]). However, algorithms based on [26] require the
repeated solution of a global optimization problem, taking into
account the queue backlog of every link. For example, even
under simple primary interference constraints,1 a maximum
weight matching problem has to be solved in every slot, re-
quiring an algorithm.
Hence, there has been an increasing interest in simple (poten-

tially distributed) algorithms. One such algorithm is the Greedy
Maximal Scheduling (GMS) algorithm (also termed Maximal
Weight Scheduling or Longest Queue First, LQF). This algo-
rithm selects the set of served links greedily according to the
queue lengths [12], [19]. Namely, at each step, the algorithm
selects the heaviest link (i.e., with longest queue size) and re-
moves it and the links with which it interferes from the list of
candidate links. The algorithm terminates when there are no
more candidate links. Such an algorithm can be implemented
in a distributed manner [12], [17].
It was shown that the GMS algorithm is guaranteed to

achieve 50% throughput in switches [8] and in general graphs
under primary interference constraints [19]. It also was proven
in [5] and [24] that under secondary interference constraints,2

the throughput obtained by GMS may be significantly lower
than the throughput under a centralized scheduler.
Although the worst-case performance of GMS can be very

low in arbitrary topologies, there are some topologies in
which 100% throughput is achieved. Particularly, Dimakis and
Walrand [9] presented sufficient conditions for GMS to provide
100% throughput. These conditions are referred to as Local
Pooling (LoP) and are related to the structure of the network.
Based on these conditions, it was shown that GMS achieves

1Primary interference constraints imply that each pair of simultaneously ac-
tive links must be separated by at least one hop (i.e., the set of active links at
any point of time constitutes a matching).
2Secondary interference constraints imply that each pair of simultaneously

active links must be separated by at least two hops (links). These constraints are
usually used to model IEEE 802.11 networks [5].
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maximum throughput in tree network graphs under -hop
interference (for any ) [16], [28], in switches [4], and in
a number of interference graph classes [28].
The LoP conditions were recently generalized to provide

the -Local Pooling ( -LoP) conditions under which GMS
achieves throughput [15], [16] (the conditions were refor-
mulated in [18]). Using these conditions, lower bounds on the
guaranteed throughput in geometric graphs [16] and in graphs
under secondary interference constraints [17] were obtained.
From a practical point of view, identifying graphs that satisfy

LoP and -LoP can provide important building blocks for parti-
tioning a network (e.g., via channel allocation) into subnetworks
in which GMS performs well [4]. Another possible application
is to add artificial interference constraints to a graph that does
not satisfy the LoP conditions in order to turn it into a LoP-satis-
fying graph. Adding such constraints may decrease the stability
region, but would enable GMS to achieve a large portion of the
new stability region.
While it is known that some graph families (mainly trees

and bipartite graphs) under primary interference satisfy
LoP, the exact structure of networks that satisfy LoP was not
characterized. In this paper, we use graph-theoretic methods
to obtain the structure of all the network graphs that satisfy
LoP under primary interference constraints (in these networks,
GMS achieves 100% throughput). This allows us to develop an
algorithm that checks if a network graph satisfies LoP in time
linear in the number of vertices, significantly improving over
any other known method. We note that although primary inter-
ference constraints may not hold in many wireless networking
technologies, the characterization provides an important the-
oretical understanding regarding the performance of simple
greedy algorithms. It also shows that the switch is the
largest switch for which 100% throughput is guaranteed.
We then focus on graphs in which GMS does not achieve

100% throughput. We consider bipartite network graphs (i.e.,
input-queued switches) and show that for bipartite graphs of
size , where and is arbitrary, GMS achieves at
least 66% throughput. Namely, for switches with up to seven
inputs or seven outputs, the throughput under GMS is bounded
from below by 66%. This significantly improves upon the well-
known 50% lower bound [8] and confirms many simulation
studies (e.g., [10]) in which it was shown that greedy algorithms
perform relatively well in switches. To show that this result does
not extend to all bipartite graphs, we show that there exists a
10 10 bipartite graph for which .
Finally, we consider interference graphs3 and categorize dif-

ferent graph families according to their -values. In particular,
we show that all co-strongly perfect graphs satisfy LoP. This
class encapsulates all the classes of perfect LoP-satisfying inter-
ference graphs that were identified before (i.e., chordal graphs,
interference graphs of trees, etc.). The observation increases the
number of graphs known to satisfy LoP by an order of mag-
nitude. Regarding -LoP, we show that there are graphs with
arbitrarily low . Since the worst-case specific graph identified
up to now had [15] and the lowest lower bound known

3Although it has been recently shown that the interference graph does not
fully capture the wireless interference characteristics in some cases [22], it still
provides a reasonable abstraction. Extending the results to general signal-to-
interference-plus-noise ratio (SINR)-based constraints is a subject for further
research.

for a graph family was 1/6 [16], [17], this provides an important
insight regarding graphs in which GMS may have bad perfor-
mance. We conclude with briefly describing a simulation study
that compares the performance of GMS to the optimal algorithm
in graphs with low .
To conclude, the main contributions of this paper are

twofold: 1) a characterization of all network graphs in which
Local Pooling holds under primary interference constraints (in
these network graphs Greedy Maximal Scheduling is guar-
anteed to achieve 100% throughput); and 2) improved lower
bounds on the throughput performance of Greedy Maximal
Scheduling in small switches. Overall, the paper demonstrates
that using graph-theoretical techniques can significantly con-
tribute to our understanding of greedy scheduling algorithms.
This paper is organized as follows. In Section II, we present

the model. We characterize all graphs that satisfy LoP under pri-
mary interference constraints in Section III. In Section IV, we
show that GMS achieves 66% throughput in switches with up to
seven inputs. We study the performance of GMS in interference
graphs in Section V, and we conclude and discuss open prob-
lems in Section VI.

II. MODEL AND PRELIMINARIES

In this section, we first present the network model under pri-
mary interference and then extend it for general interference.
We also provide some graph-theoretic definitions and derive re-
sults for graphs that exhibit certain symmetry.

A. Network Graphs

Consider a network graph , where
is the set of nodes, and

is a set of links indicating pairs of nodes between which data
flow can occur. Following the model of [4], [9], [15], and
[26], assume that time is slotted and that packets are of equal
size, each packet requiring one time slot of service across a
link. The model considers only single-hop traffic. A queue is
associated with each edge in the network. We assume that the
stochastic arrivals to edge have long term rates and are
independent of each other. We denote by the vector of the
arrival rates for every edge . For more details regarding
the queue evolution process under this model, see [4], [9], and
[15].
For a graph , let be a 0-1 matrix with rows,

whose columns represent themaximal matchings of . A sched-
uling algorithm selects a set of edges to activate at each time slot
and transmits packets on those edges. Since they must not inter-
fere under primary interference constraints, the selected edges
form amatching. In other words, the scheduling algorithm picks
a column from the maximal matching matrix at
every time slot . If , one of the two nodes along edge
can transmit, and the associated queue is decreased by one.

We define the stability region (or capacity region) of a network
as follows.
Definition 2.1 (Stability Region [26]): The stability region of

a network is defined by

for some
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where is the convex hull of the columns of
(inequality operators are taken elementwise when their

operands are vectors).
A stable scheduling algorithm (which we also refer to as a

throughput-optimal algorithm or an algorithm that achieves
100% throughput) is defined as an algorithm for which the
Markov chain that represents the evolution of the queues is
positive recurrent for all arrivals . It was shown in
[26] that the Maximum Weight Matching algorithm that selects
the matching with the largest total queue sizes at each slot
is stable. When an algorithm is not throughput-optimal, the
efficiency ratio indicates the fraction of the stability region
for which the algorithm is stable (in simple words, the queues
are bounded for all arrival rates ).
We briefly reproduce the definitions of LoP presented in [4]

and [9].4 In the following, denotes the vector having each entry
equal to one.
Definition 2.2 (Subgraph Local Pooling, SLoP): A network

graph satisfies SLoP if there exists such that
.

This definition also corresponds to associating a weight, de-
noted as , to all edges , such that

for every maximal matching in

If a vector satisfies the above condition, we will say that it is
a good edge weighting.
Definition 2.3 (Overall Local Pooling, OLoP): A network

graph satisfies OLoP if every subgraph of satisfies SLoP.
In [9], Dimakis and Walrand proved that if a graph satisfies

OLoP, GMS achieves 100% throughput. In networks in which
OLoP is not satisfied, -Local Pooling [15], [16] provides a way
of estimating the efficiency ratio of GMS. We provide a dif-
ferent definition called -SLoP that is equivalent to the original
one from [15] and [16].
Definition 2.4 ( -SLoP—Xi et al. [18]): A network graph

satisfies -SLoP if and only if there exists a vector
such that

Clearly, if a graph satisfies -SLoP, it also satisfies -SLoP
for every . Therefore, it is sufficient to focus on the
largest value of such that satisfies -SLoP. This value is
denoted by

satisfies -SLoP (1)

This definition can also be written as a linear program whose
solution yields the for a given graph [18]

subject to (2)

We say that a graph satisfies -OLoP if all of its subgraphs
satisfy -SLoP. We can then define the local pooling factor of
a graph as follows.

4This definition slightly differs from that in [4] by setting the sum equal to
instead of , where is a positive constant.

Definition 2.5 (Joo et al. [15]): The local pooling factor
of a network graph is the largest value of for which

-SLoP is satisfied for all subgraphs .
This definition can also be written in terms of

for all subgraphs of (3)

It was proven in [15] that the local pooling factor of a
graph is equal to the efficiency ratio of GMS in that graph.
For instance, if a graph has a local-pooling factor of 2/3, GMS
is stable for all arrival rates and therefore achieves
66% throughput. Note that if and only if satisfies
the OLoP condition.

B. Interference Graphs

We now generalize the model by introducing interference
graphs. Based on the network graph and the interference con-
straints, the interference between network links can be modeled
by an interference graph (or a conflict graph)
[14]. We assign . Thus, each edge in the network
graph is represented by a node in the interference graph, and
an edge in the interference graph indicates a conflict be-
tween network graph links and (i.e., transmissions on
and cannot take place simultaneously). Under primary inter-
ference, the interference graph corresponds to the line graph
of .
Themodel and the LoP theory described so far extend to inter-

ference graphs. The nodes of correspond to queues to which
packets arrive according to a stochastic process at every time
slot. A scheduling algorithm must pick an independent set at
each slot so that neighboring nodes will not be activated simul-
taneously. Each column of the matrix corresponds to a
maximal independent set of . An algorithm that selects the in-
dependent set with the largest weights (i.e., solves theMaximum
Weight Independent Set Problem) is stable. SLoP corresponds
to finding a vector that assigns a weight to
each node such that for every maximal in-
dependent set in . If such a vector exists, we will call it
a good node weighting. For OLoP to be satisfied, SLoP must
be satisfied by all induced subgraphs (i.e., with respect to node
removals). -SLoP and -OLoP extend to this case in a very
similar way.

C. Graph-Theoretic Definitions

We review some definitions from graph theory that are re-
quired in the following sections (for details, see [27]). For a
graph , we denote by the set of neighbors of and by

the degree of . For , we say that
is a clone of if . We say that is a

clique (independent set) if the vertices in are pairwise adja-
cent (nonadjacent). A matching is said to cover a node if
there exists an edge in that is incident with . For ,
we denote by the graph obtained from by deleting and
all edges incident with it. An induced subgraph of is a sub-
graph of that is obtained from by repeatedly deleting a node
and all edges incident with it. For two graphs , , an isomor-
phism from to is a bijection such
that if and only if . Two graphs
, are isomorphic if there exists an isomorphism from

to . An automorphism of is an isomorphism from to it-
self. A graph is edge-transitive if for all ,
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there exists an automorphism of such that .
A graph is vertex-transitive if for all , there ex-
ists an automorphism of such that . For ,
is -connected if for every two distinct vertices in , there exist
vertex-disjoint paths between them. A graph is connected if it

is 1-connected. A connected component of is a maximal con-
nected induced subgraph of . Finally, for , we let
denote the complete graph on nodes, and for , we let

denote the complete bipartite graph.

D. —Values and Bounds on

We now describe a simple method to compute a lower bounds
on and provide amethod for calculating of edge- and
vertex-transitive graphs. These are graphs that exhibit a high
degree of symmetry (e.g., cycles). We will use the following
notation:

is a matching in

is a matching in

The following lemma presents a lower bound on [17].
Using Definition 2.4, we provide an alternative proof below.
Lemma 2.1 (Leconte et al. [17]): For any graph ,

.
Proof: [Proof of Lemma 2.1] Let
. This is clearly a good edge weighting for . Since every

maximal matching in has size at least , it follows that
for every maximal matching

in . Therefore, .
To demonstrate the benefits of the -OLoP definition, we

provide a very simple proof to the fact that GMS achieves
50% throughput in any network graph (shown in different
methods in [8] and [19]). First, note that the size of any maximal
matching is at least half the size of a maximum matching [23],
which means that , for all . By Lemma 2.1
and (3), it follows that for every graph , and
therefore that .
In order to extend this lemma to general interference graphs,

we define the independent set counterparts of and

is an independent set in

is an independent set in

It is easy to generalize Lemma 2.1 to interference graphs to
show that . For vertex-transitive graphs,
the following is a stronger counterpart of Lemma 2.1, proved in
Appendix I.
Lemma 2.2: If is vertex-transitive, then

.
Since edge-transitive networks graphs are special cases of

vertex-transitive interference graphs, Lemma 2.3 follows from
Lemma 2.2:
Lemma 2.3: If is edge-transitive, then

.
Proof: Notice that it follows, from the fact that is

edge-transitive, that the line graph of is vertex-tran-
sitive. Moreover, since matchings in correspond to inde-
pendent sets in , it follows that and

. Hence, it follows from Lemma 2.2 that
.

Fig. 1. Graphs (a) and (b) are examples of graphs from the family , all of
which fail OLoP under primary interference. Graph (c) is the Petersen graph.
This graph does not satisfy OLoP because it contains, among other graphs,
and (bold edges) as subgraphs. (a) . (b) . (c) Petersen graph.

III. NETWORK GRAPHS THAT SATISFY OLOP UNDER PRIMARY
INTERFERENCE

Only a small collection of network graphs have been shown
to satisfy OLoP under primary interference. Among the known
cases are trees [4], [16] and bipartite graphs [4]. The main
result of this section is a description of the structure of all net-
work graphs that satisfy OLoP under primary interference. This
structure shows that such graphs are relatively easy to construct
and, moreover, they can be recognized in linear time. The proofs
of the results for this section can be found in Appendix II.
Define the following families of graphs. For , let be

a cycle with edges (or, equivalently, nodes). For and
, let be the graph formed by the union of two

cycles of size and joined by a -edge path (where ). If
, the cycles share a common node [see Fig. 1(a) and (b)].

Let . For
two graphs and , we say that contains as a subgraph
if has a subgraph that is isomorphic to . We will say that a
graph is -free if it does not contain any graph as a
subgraph.
We will focus on connected graphs because it is easy to see

that a graph satisfies OLoP if and only if all its connected com-
ponents satisfy OLoP. Therefore, we may assume without loss
of generality that all graphs in this section are connected graphs.
The results in this section are threefold. First, in Section III-A,

we give a structural description of all -free graphs. Second, in
Section III-B, we will use this description to prove the following
theorem.
Theorem 3.1: A network graph satisfies OLoP under pri-

mary interference if and only if is -free.
Theorem 3.1 shows that if a network graph does not satisfy

OLoP under primary interference, then contains some
as a subgraph. For example, it was previously shown that the
Petersen graph [Fig. 1(c)] fails OLoP [15]. Using Theorem 3.1,
we can immediately see this from the fact that it contains, for
example, and as a subgraph.
Testing whether a network graph satisfies SLoP previously

required enumerating all maximal matchings (of which there
are an exponential number) and solving a linear program [9].
To test the OLoP condition, this procedure had to be repeated
for every subgraph. The weakness of this approach is its large
computational effort. In Section III-C, we present the third re-
sult, which uses the structure of -free graphs to construct an
algorithm that decides in linear time whether a graph satisfies
OLoP, as described in the following theorem.
Theorem 3.2: It can be decided in time whether

a network graph satisfies OLoP under primary interference.
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Fig. 2. Example of an -free graph (the dashed edges may or may not be
present). The ellipses show the blocks of the graph.

A. Structure of -Free Graphs

We will start with a structural description of -free graphs.
The reason for our interest in -free graphs is the fact (which
will be proven in Section III-B) that the class of -free graphs
is precisely the class of network graphs that satisfy OLoP under
primary interference.
Wewill describe the structure of -free graphs in terms of the

so-called ‘block decomposition’. Let be a connected graph.
We call a cut-node of if is not connected.
We call a maximal connected induced subgraph of such
that has no cut-node a block of . Let be the
blocks of . We call the collection the block
decomposition of . It is known that the block decomposition
is unique and that forms a partition
of (e.g., [27]). Furthermore, the node sets of every two
blocks intersect in at most one node and this node is a cut-node
of .
Block decompositions give a tree-like decomposition of a

graph in the following sense. Construct the block-cutpoint graph
of by keeping the cut-nodes of and replacing each block
of by a node . Make each cut-node adjacent to if and
only if . It is known that the block-cutpoint graph of
forms a tree (e.g., [27]). With this tree-like structure in mind,

we say that a block is a leaf block if it contains at most one
cut-node of . Clearly, if , then contains at least
two leaf blocks.
It turns out that the block decomposition of an -free graph

is relatively simple in the sense that there are only two types of
blocks. The types are defined by the following two families of
graphs. Examples of these families appear in Fig. 2.

: Construct as follows. Let be a graph with
, with , such that:

1) is a cycle;
2) if , then the other adjacencies are arbitrary; if

, then all other pairs are nonadjacent, except
possibly , and .

Then, .
Now, iteratively perform the following operation. Let
, and let with . Construct

from by adding a node such that .
Then, . We say that a graph is of the type if it
is isomorphic to a graph in .

: Let , where
is constructed from by adding an edge between

the two nodes on the side that has cardinality 2. We say that
a graph is of the type if it is isomorphic to a graph in .

In simple words, graphs of the type are constructed by
starting with a cycle of length five or seven. Then, we may add
some additional edges between nodes of the cycle, subject to
some constraints. Finally, we may iteratively take a node of
degree 2 and add a clone of . It will turn out that -free
graphs have at most one block of the type and that all other
blocks are of the type. This means that -free graphs can be
constructed by starting with a block that is either of the or of
the type, and then iteratively adding a block of the type
by “gluing” it on an arbitrary node.
Fig. 2 shows an example of an -free graph. The tree-like

structure is clearly visible. The graph has one block of the
type with . This block consists of a cycle of length 7
together with two clones. The other blocks are of the type.
Some of them are attached to the block of the type through
a cut-node. Others are attached to other blocks of the type.
Notice that trees and complete bipartite graphs, which
were previously known to satisfy OLoP [4], [16], are, as should
be expected, subsumed by this structure.
The goal of this section is to prove the following formal ver-

sion of the characterization given above.
Theorem 3.3: Let be a connected graph, and let

be the block decomposition of . Then,
is -free if and only if there is at most one block that is of the
type and all other blocks are of the type.
The proof of the “if” direction is straightforward. Here, we

will give a proof sketch of the “only-if” direction in a number of
steps. For a block in an -free graph, its type depends on the
size of the longest cycle in . It will turn out that if contains
a cycle of length 5 or 7, then is of the type. Otherwise,
is of the type. We have the following result on blocks that
have a cycle of length 5 or 7.
Lemma 3.1: Let be an -free graph, and let be a block of
. Let be a cycle in that has maximum length. If
, then is of the type.
Next, we deal with blocks that do not contain a cycle of

length 5 or 7. It follows from the definition of -free graphs that
such blocks do not have cycles of length at least 5. Maffray [20]
proved the following theorem.
Theorem 3.4 (Maffray [20]): Let be a graph. Then, the

following statements are equivalent.
1) does not contain any odd cycle of length at least 5.
2) For every connected subgraph of , either is isomor-
phic to , or is a bipartite graph, or is isomorphic
to for some , or has a cut-node.

Theorem 3.4 implies the following lemma.
Lemma 3.2: Let be an -free graph, and let be a block of
. Suppose that contains no cycle of length at least 5. Then,
is of the type.
We are now ready to prove Theorem 3.3.
Proof: [Proof of Theorem 3.3]: Let be an -free graph,

and let be the block decomposition of . For
every , if contains a cycle of length 5 or 7,
it follows from Lemma 3.1 that is of the type. Otherwise,
it follows from from Lemma 3.2 that is of the type. Now
suppose that there are and such that
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contains a cycle of length and contains a cycle of
length . Since is connected, there exists a path of length

from a node in to a node in . Since and are
subgraphs of different blocks, and share at most one node.
If they share a node, then . Now the edges of
form a graph isomorphic to , a contradiction. This proves
Theorem 3.3.

B. Network Graphs Satisfy OLoP Under Primary Interference
if and Only if They Are -Free

Now that we have described the structure of all -free graphs,
we use this structure to prove Theorem 3.1, which states that
a network graph satisfies OLoP under primary interference if
and only if it is -free. It was shown in [4, Theorems 2 and 3]
that all cycles of length , fail SLoP.5 Therefore,
such cycles do not appear as subgraphs in graphs that satisfy
OLoP. The following lemma shows that the same is true for the
graphs .
Lemma 3.3: fails SLoP for all , .
The results from [4] together with Lemma 3.3 imply the fol-

lowing result.
Corollary 3.1: Graphs that satisfy OLoP are -free.
Proof: Let be a graph that satisfies OLoP. By the def-

inition of OLoP, every subgraph of satisfies SLoP. Since
every graph in fails SLoP, it follows that does not contain
any graph in as a subgraph.
Corollary 3.1 settles the “only-if” direction of Theorem 3.1.

To prove the “if” direction, we will start with a useful lemma.
Lemma 3.4: Let be a graph and such that

and is a clone of . Then, satisfies SLoP.
Proof: Let and be as in the claim, and let
.

Define by

if is incident with or , and
if
otherwise.

To see that is a good edge weighting for , let be a max-
imal matching in . If , then no other edge in
is incident with or , and hence . There-
fore, we may assume that . It suffices to show that
covers both and . Hence, let us assume to the contrary

that does not cover . Since is a matching, at most one
of is in . From the symmetry, we may assume that

. However, now we may add to the matching and
obtain a larger matching, contary to the maximality of .
The following lemma is the crucial step in settling the “if”

direction of Theorem 3.1. Again, we give the proof idea.
Lemma 3.5: Every connected -free satisfies SLoP.
Let be a connected -free graph, and let

be the block decomposition of . It follows from Theorem 3.3
that there is at most one block that is of the type and all
other blocks are of the type. We will construct a good edge
weighting for .
Suppose first that has a leaf block of the type. If
, then let be the cut-node of in . If , let

be arbitrary. There are four cases.

5Although the case considered in [4] pertains to interference graphs, the net-
work case is identical since the interference graph (under primary interference)
of a cycle is a cycle of the same length.

1) is isomorphic to : Let denote the nodes of .
Let for all edges incident with and
for every other edge .

2) is isomorphic to : Let for all
and for every other edge .

3) is isomorphic to : Let denote the nodes
of , and let and

for all .
4) is isomorphic to or for some : Let

such that and is an indepen-
dent set. Let , and let .
If is isomorphic to and , then assume that

and set .
Otherwise, contains nodes , such that

and is a clone of , and hence, the result
follows from Lemma 3.4.

Thus, we may assume that does not have a leaf block of
type . Since if , has at least two leaf blocks, and
hence, at least one leaf block of the type, we may assume that

and is of the type. Let be as in the defini-
tion of . It follows from the definition of that .
First, suppose that . Then, it follows from
the definition of that there exist two nodes such that

and is a clone of . By Lemma 3.4,
satisfies SLoP. Thus, we may assume that . If
, then every maximal matching has size two, and hence,

we may set for all . If , then
every maximal matching has size three, and hence, we may set

for all .
We are now in a position to prove Theorem 3.1.
Proof: [Proof of Theorem 3.1]: Corollary 3.1 is the

“only-if” part of the theorem. For the “if” part, since every
subgraph of is -free, it follows from Lemma 3.5 that every
subgraph of satisfies SLoP. Therefore, satisfies OLoP.

C. Recognizing Network Graphs That Satisfy OLoP Under
Primary Interference

Having described the structure of graphs that satisfy OLoP,
we provide an efficient algorithm for testing whether a network
graph satisfies OLoP under primary interference. A useful ob-
servation is the following (see Appendix II for the proof).
Lemma 3.6: for every -free graph .
This puts us in a position to prove Theorem 3.2.
Proof: [Proof idea of Theorem 3.2]: We may assume

that is connected. By Theorems 3.1 and 3.3, it suffices to
check whether has the structure described in Theorem 3.3.
We propose the following algorithm. Let and

. First, check that because otherwise is
not -free by Lemma 3.6 and we can stop. Now, construct the
block decomposition of . Since ,
this can be done in time (see, e.g., [11]).
For each block , test in time whether is of
the type. If has more than one block that is not of the
type, then is not -free and we stop. If we encounter no such
block, then is -free and we stop. Next, check whether
is of the type using multiple applications of Bodlaender’s
algorithm [3], which, for fixed , finds a cycle of length at
least in a given graph , if it exists, in time.
Checking this can be done in time. Therefore, the
overall complexity of the algorithm is .
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Fig. 3. Desargues graph for which and which is a subgraph of
, showing that .

IV. SWITCHES WITH SATISFY

In Section III, we characterized the full set of graphs that sat-
isfy OLoP. It is only natural to ask the following question: What
happens to graphs that do not satisfy OLoP? In this section, we
will show that every bipartite graph that has one side with
at most seven nodes satisfies , which implies that

for , . We also note that
this bound is close to being tight by presenting a bipartite graph
with 10 nodes on one side for which . Consider the
so-called Desargues graph in Fig. 3. is edge-transitive, and
hence it follows from Lemma 2.3 and the fact that
and that . Since is a subgraph of

, this implies that for all , .
We now concentrate on subgraphs of with , .

We will start with some easy observations that help give a lower
bound on .
Lemma 4.1: Let be a graph.
(a) If there exists such that every maximal

matching in covers , then .
(b) If for some , then .
(c) If for some , then .
Proof: Part (a): Let for all edges incident with

, and for all other edges. Clearly, every maximal
matching satisfies . This proves (a). Part (b)
follows immediately because if , then every max-
imal matching covers the unique neighbor of . Part (c): Let

be the neighbors of . Let ,
if , for all edges

that are incident with or , and for all other edges.
It is not hard to see that for every maximal
matching in . This proves (c), thus proving Lemma 4.1.
By using the conditions given in Lemmas 4.1 and 2.1, we

prove the following lemma in Appendix III.
Lemma 4.2: Let be a bipartite graph with . Then,

.
Lemma 4.2 has the following corollaries.
Corollary 4.1: Every bipartite graph with satis-

fies .
Proof: Let be a subgraph of (perhaps ).

Clearly, . If , then from
Lemma 4.2, . Otherwise, , and hence it
follows from Lemma 2.1 that . Therefore,

for all subgraphs of , and .
It is already known that for . For

, we obtain the following.
Corollary 4.2: for all , .
Proof: Let , . It follows from Corollary 4.1

that . Since has as a subgraph and
, it follows that .

Fig. 4. Throughput guarantees (bounds on ) for various interference graph
families. —Perfect graphs; —Nonperfect graphs; ECyc 6—Cycles

with even and ; OCyc 9—Cycles with odd and
; L(Bip) 7—Line graphs of bipartite graphs with ;

CBip—Chordal bipartite graphs; L(Pet)—Line graph of the Petersen graph;
L( -free)—Line graphs of -free graphs; —Graph from [13, Fig. 42];
MK—Möbius–Kantor graph; —Graph obtained by a single cycle substitu-
tion; —Sequence of graphs obtained by recursive cycle substitutions.

V. INTERFERENCE GRAPHS AND THEIR -VALUES

Our focus so far has been on network graphs and primary
interference constraints. We now consider general interference
graphs that represent arbitrary transmission constraints. Re-
call that under general interference constraints, a scheduling al-
gorithm has to select an independent set from the interference
graph at each slot. We are interested in the performance of a
low-complexity GMS algorithm which greedily picks the nodes
with the largest weight (this algorithm is also referred to as the
Maximal Weighted Independent Set algorithm). The results are
summarized in Fig. 4, which illustrates throughput guarantees
of several graph families.

A. OLoP-Satisfying Interference Graphs

We first show that the OLoP condition holds in a large sub-
class of perfect graphs, which we will call co-strongly perfect
graphs.
Definition 5.1 (Co-Strongly Perfect Graph): A graph is

co-strongly perfect if for every induced subgraph of , there
exists such that .
Equivalently, a graph is co-strongly perfect if and only if
contains a clique that intersects every maximal independent

set in . It follows from the definition, and from the interference
graph counterparts of Definitions 2.2 and 2.3, that every graph
that is co-strongly perfect satisfies OLoP.
Note from the above weighting that co-strongly perfect

graphs satisfy OLoP with an integer vector . An open ques-
tion is whether all perfect graphs that satisfy OLoP do so with
integer weights . This is not true for imperfect graphs because
is an imperfect graph that satisfies OLoP with the unique

optimal node weighting for all . The
vertical division of Fig. 4 into perfect and nonperfect graphs,
denoted and , respectively, allows us to represent this open
problem by the question mark in the perfect division.
The Co-Strongly Perfect class includes a large number of

perfect graph families (some of them identified individually in
[28]). To provide some context about the magnitude of the re-
sult, consider the set of simple graphs with 10 nodes. There are
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3 063 185 such co-strongly perfect graphs. This can be com-
pared to the 126 768 chordal graphs with 10 nodes (the chordal
graphs family is one of the largest previously known families
satisfying OLoP) and to the 106 trees [25].
We proved in Section III-A that -free network graphs are

OLoP-satisfying under primary interference. This is shown in
Fig. 4 by the class L( -free) (line graphs of -free graphs),
which is a subclass of the Line Graphs family. Since L( -free)
graphs represent all OLoP-satisfying line graphs, this family
covers the entire section of Line Graphs that is in the
division. The chordal bipartite family, denoted CBip in Fig. 4,
is another family that is entirely OLoP-satisfying and forms
the subclass of Bipartite graphs that are co-strongly perfect and
OLoP-satisfying [28].

B. -Values for Line Graphs

We examine the -values of interference graphs that are
Line Graphs and that fail OLoP. As mentioned in Section II and
in [19], for all Line Graphs. In Fig. 4, the bottom part
of this family is shaded to indicate that we still do not have any
specific example of a line graph for which . The line
graph with the lowest known -value is the line
graph of the Petersen graph [Fig. 1(c)] [15], denoted L(Pet).
We consider families that are subclasses of line graphs. The

results on bipartite network graphs from Section IV (line graphs
of subgraphs of with have ) are shown on
the figure as the L(Bip) class, which is located in the top
and the second divisions.
We now obtain the -values of the entire family of cycles,

some of which have been considered individually in the litera-
ture. For the 6-cycle, it has been shown that [9], [15]
(represented by the point in Fig. 4). It has also been shown
that and satisfy OLoP, while larger cycles do
not [28]. Using Lemma 2.2, the following lemma provides the
value of for all cycles.
Lemma 5.1: For , .
Proof: Let . Since every proper induced subgraph

of (i.e., ) is a forest, we have for every
such . Now consider itself. Amaximum independent set in

can be constructed by choosing nodes alternatingly on the
cycle. This implies that . A smallest maximal
independent set can be constructed by choosing nodes skipping
two nodes at a time. This implies that . Since
is vertex-transitive, it follows from Lemma 2.2 that

. From this and the above, the result follows from
the definition of .
To the best of our knowledge, this is the first time an entire

family’s -value has been characterized this precisely. This re-
sult is shown in Fig. 4 as the classes ECyc and OCyc
for large even and odd cycles, respectively. No odd cycle can
have , which is why the OCyc family is strictly within
the second division. As can be seen in Fig. 4, the class ECyc
is exactly the intersection of the Bipartite and the Line Graphs
families that do not satisfy OLoP.6 In other words, there are no
bipartite line graphs that have and that are not large even
cycles. Since for all , the following

6Since line graphs do not contain induced claws (i.e., complete bipartite
graphs ), it follows that bipartite line graphs have maximum degree of two.
Hence, the family of bipartite line graphs consists of paths and even cycles.

Fig. 5. Graphs that have low -values. (a) Möbius–Kantor graph. (b) , a
graph where each node of a is substituted by a .

result for the lower bound of arbitrary cycles, that was proven
in [18], is immediately obtained from Lemma 5.1.
Lemma 5.2 (Boyaci et al. [18, Lemma 16]): For all cycles
, , .

C. Low -Values

We now focus on graphs with very low . The current
knowledge of -values is limited to a handful graphs in which
GMS achieves a large portion of the stability region. The lowest
-value of a specific graph is for the line graph of

the Petersen graph [15]. In [16], it was shown that for geometric
graphs . Here, we present a graph that has

and provide a method through which it is possible to
create networks with arbitrarily low .
Consider the graph shown in Fig. 5(a). It is a generalized

Petersen graph with factors , also known as the
Möbius–Kantor graph . Because of its vertex-transitivity,
it follows from Lemma 2.2 and from the fact7 that
and that . Hence, GMS can
only guarantee 50% throughput.8 Being a bipartite graph,
the Möbius–Kantor implies that Bipartite graphs can have
-values as low as 0.5, as illustrated in Fig. 4. Whether bipar-

tite graphs can have is still an open question, shown
by the shaded region in Fig. 4.
Now, consider the following family. Let be a 6-cycle and,

for , construct from by substituting a 6-cycle
for each node . By substituting for a node of
the original graph, we mean that we replace by a 6-cycle
and we make every adjacent to every neighbor of
. For example, is shown in Fig. 5(b), (where the hexagons
represent 6-cycles). Using Lemma 2.2 and the fact that the
are vertex-transitive, we prove the following observation.
Observation 5.1: for all .
Proof: Clearly, every is vertex-transitive. Let us con-

sider . A maximum independent set in can be constructed
by first choosing three nonconsecutive 6-cycles and, next,
choosing three nonconsecutive nodes from each of these three

7The largest independent set of is constructed by selecting four
nodes from the outer cycle and four from the inner cycle. The smallest indepen-
dent set of is constructed by selecting two opposite nodes from the
outer cycle and two opposite nodes from the inner cycle.
8Note that since this graph contains a claw (i.e., a complete bipartite graph
), it cannot be the interference graph of any network under primary inter-

ference constraints.
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6-cycles. It is clear that this constitutes a maximum indepen-
dent set, and its size is . A minimum maximal
independent set in can be constructed by choosing two
opposite 6-cycles and, next, choosing two opposite nodes from
each of these two 6-cycles. This gives a maximal independent
set of size . Since is vertex-transitive, it follows
from a direct extension of Lemma 2.1 to interference graphs
that , and hence . This reasoning
extends easily to the general case, where we have
and . Therefore, .
Since we may choose arbitrarily large, it follows that there

exist graphs with arbitrarily small . A graph generated by this
method appears in Fig. 4 as , and the sequence of graphs ob-
tained through recursive substitution with decreasing -values
is shown as .
Finally, it can be shown that the family of weakly chordal

graphs that was left unresolved in [28] is not entirely OLoP-
satisfying. An example of a weakly chordal graph that is not
co-strongly perfect and that has appears in [13, Fig. 42]
and is denoted in Fig. 4 as .

D. Simulation Results

When GMS guarantees only low throughput efficiency ,
there may exist a specific arrival rate outside of for which
GMS is not stable. In real-life arrival processes, it is sometimes
unlikely that such an arrival process would occur. Hence, GMS
may behave better than predicted. We used MATLAB simula-
tions in order to evaluate the performance of GMS in graphs
with low identified in Section V-B.
We consider i.i.d. uniform arrival of packets to every node of

an interference graph at each time slot for a range of nor-
malized loads within the stability region. Since we are using
interference graphs, each node in the graph represents a link
in the network graph . Each node contains a queue whose
size changes with the arrival of new packets and the service of
queues by the scheduler. Nodes that are connected by a link
cannot be activated at the same time. We tested GMS and the
optimal algorithm that solves the Maximum Weight Indepen-
dent Set problem.9 For each arrival rate, the simulation was
run for 1 100 000 slots, and the first 100 000 slots were dis-
carded to account for the initial phase. The results were aver-
aged over 10 repetitions. As an example, the average queue size
for three specific graphs are plotted in Fig. 6. For the cycle ,

, but the queues under GMS become unstable at a load
level of 0.9. Although for the Möbius–Kantor graph, ,
GMS performs better than in . For theOLoP-satisfying cycle
, GMS and the optimal algorithm perform similarly.

VI. CONCLUSION

The Local Pooling (LoP) conditions provide a new tool
for better understanding the performance of Greedy Maximal
Scheduling (GMS) algorithms. In this paper, we identified
all the network graphs in which these conditions hold under
primary interference constraints (in these graphs, Greedy Max-
imal Scheduling achieves 100% throughput). In addition, we
showed that in all bipartite graphs of size up to , GMS is
guaranteed to achieve 66% throughput. Finally, we studied the

9Although the problem is NP-complete, we obtained numerical solutions in
small graphs.

Fig. 6. Average queue sizes as a function of the arrival rate under GMS and the
optimal algorithm. The results are obtained via simulation in a 12-cyle ,
a Möbius–Kantor graph, and a 5-cycle .

performance of GMS in interference graphs and showed that
can be arbitrarily low.
We emphasize that our objective in this paper is to obtain

a better theoretical understanding of LoP that will assist the
development of future algorithms. As such, the paper demon-
strates that using graph-theoretical methods can significantly
contribute to our understanding of greedy scheduling algo-
rithms. From a graph-theoretical point of view, LoP raises
many interesting open problems. For example, three of the
authors [6], [7] are currently working on extending some of the
results to claw-free graphs, which are a generalization of the
interference graphs of networks under primary interference.
From the networking point of view, there remain many open
problems. For example, generalizing the interference model to
a model based on SINR and deriving the corresponding LoP
conditions remain major subjects for future research.

APPENDIX I
PROOF OF LEMMA 2.2 (SECTION II)

Let be a graph. The following lemma provides a useful
method for constructing optimal solutions to the following
linear program, which is the interference graph analog of (2):

subject to (4)

where and is the maximal indepen-
dent set/vertex incidence matrix corresponding to . Note that

is the independent set counterpart of introduced
previously. For two functions and , we
denote by the composition of with , i.e.,
is defined as . For an integer and an
automorphism of , we denote by the th composition of
with itself (where denotes the identity function).
The following lemma will be used for proving Lemma 2.2.
Lemma 1.1: Let be a vertex-transitive graph. If (4) has a

solution , then (4) has a solution such that
for all .
Proof: Let be a solution of (4) such that
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is minimum. If , then the lemma holds. Thus, suppose
for a contradiction that . Then, let such
that is maximum. Since is vertex-transitive,
there exists an automorphism of such that . Let

be smallest such that and define

Since is an automorphism, every term in the summation cor-
responds to a solution of (4). Since is the convex
combination of solutions of (4), is also a solution of (4). From
the triangle inequality for

By the construction of , . Notice that
for all . Since , we obtain

which contradicts the assumption that was chosen with
minimum. This proves Lemma 1.1.

Proof: [Proof of Lemma 2.2]: From Lemma 1.1, there ex-
ists an optimal solution for the linear program (4) such
that for all for some . Therefore, (4) may
be reduced to the following linear program in two variables:

subject to (5)

In this linear program, it is optimal to choose as large as pos-
sible and choose as large as possible subject to the choice of
. Clearly, the largest possible value of is . The corre-
sponding largest possible value of is .

APPENDIX II
FULL PROOFS OF THE RESULTS IN SECTION III

Proof: [Proof of Lemma 3.1]: We prove this by induction
on . Let be the nodes of the cycle . It
follows from the definition of that . We will start
with a number of subclaims:
1) Every Node in Is a Clone for : Let

. Since and has
no cut-node, it follows that is 2-connected, and hence there
exist two edge-disjoint paths and from to two distinct
nodes of , say and , respectively. From the symmetry, we
may assume that and . First assume that

. Now, is
a cycle of length , contradicting
the maximality of .
It follows that and, therefore,

. Thus, has two neighbors in .
If has two consecutive neighbors in , say , , then

is a cycle of length
, contrary to the maximality of . If , then, since

has at least two neighbors in , it follows that is a
clone for . Therefore, we may assume that . Suppose
that is adjacent to and for some .
From the symmetry, we may assume that . However,

is a cycle of length 6, a
contradiction. From the symmetry, has exactly two neighbors
in , and they are and for some .
Hence, is a clone for . This proves (i).
2) Is an Independent Set: Suppose that

are adjacent nodes. We may assume that is a
clone of . First, suppose that is also a clone of . Then,

is a cycle of length ,
contrary to maximality of . Next, suppose that is a clone of a
node at distance 2 of , say . Then,

is a cycle of length , contrary to the maximality of .
Finally, suppose that and is a clone of a node at distance
3 of , say . It follows that
is a cycle of length 8, a contradiction. This proves (ii).
Now, suppose there exists . It follows

from the above that is a clone for . From the symmetry, we
may assume that is a clone of . We claim that .
For suppose not; then, has a neighbor . First,
suppose that . It follows from (i) that is
a clone of or of . From the symmetry, we may assume that
is a clone of . However,

is a cycle of length 6, a contradiction. Therefore, it follows that
for some . First assume that .

Then, is a cycle of length 6,
a contradiction. From the symmetry, this leaves only the case
where and . We may assume that .
However, is a cycle of length
6, a contradiction. This proves that . It follows from
the induction hypothesis that is of the type. Therefore,
by the definition of , it follows that is of the type.
Therefore, we may assume that . If ,

then we are done. If and is an induced cycle in , then
we are also done. If and is not an induced cycle in
, then there are extra edges in . Hence, we may assume that

there is an edge between some and with . There
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is no such that either: (a) is adjacent to
; or (b) is adjacent to and is adjacent to .

From the symmetry, we may assume that . If is adja-
cent to , it follows that
is a cycle of length 6, a contradiction. For part (b), if is
adjacent to and is adjacent to , then it follows
that is a cycle of length 6, a
contradiction. This proves (iii).
It follows from the above and from (iii) that there exists

such that is adjacent to . From the sym-
metry, we may assume that . It follows from (iii) that
is nonadjacent to and , and is nonadjacent to and .
Hence, the only possible other edges are and . There-
fore, is of the type.

Proof: [Proof of Lemma 3.2]: Since has no cycle
of length at least 5 and has no cut-node, it follows from
Theorem 3.4 that either is a bipartite graph, or is isomor-
phic to , or is isomorphic to . In the latter two cases,
we are done. Thus, suppose that is a bipartite graph. Let

such that and are independent sets. If
, then is a cut-node, a contradiction. From the

symmetry, it follows that and . Now, suppose
is nonadjacent to . Since is 2-connected,

it follows that there are two edge-disjoint paths and
from to . Since and are nonadjacent and is bipartite,
it follows that and . However,

is a cycle of length at least 6, a con-
tradiction. It follows that is complete to . If and

, then contains a cycle of length 6, a contradiction.
Therefore, at least one of , has size exactly 2. Hence, is
isomorphic to with , and therefore
is of the type.
The following lemma is used in the proof of Lemma 3.3.
Lemma 2.1: Let , and let . Let be a graph,

and let be an -cycle disjoint from . Let such
that there exists a matching in that covers all neighbors of
in , but not itself. Let be the graph constructed from

the disjoint union of and by adding a path of length
between and . Then, every good edge weighting
for satisfies for every .

Proof: Let be the nodes of in order, and
let be the nodes of . We may assume that
, and . We use induction on . First, sup-

pose that , i.e., . We will prove this for the
case when . The case when is analogous. Let
be a maximal matching in that covers . Let

, and let . Since is
a good edge weighting and and are maximal match-
ings, it follows that . Now, let

be a maximal matching in that does not cover . Let
and . Since

is a good edge weighting and and are maximal match-
ings, it follows that .
Hence, . Using the symmetry, it follows
that . Combining this with the equality
found above, it follows that , and hence
that . Finally, let be
a maximal matching in that covers all neighbors of but
not itself. Let and

. Since is a good edge weighting and and

are maximal matchings, it follows that
. Hence, and, from the sym-

metry, . This proves the claim for .
Next, suppose that . It follows from the induction hy-

pothesis that for all .
Let be a matching in that covers all neighbors of but not
itself. Let be a maximal matching in

that covers , and let be a maximal matching in
that does not cover . Since and are

maximal matchings, it follows that . Since
, .

Proof: [Proof of Lemma 3.3]: Let , ,
and suppose that satisfies SLoP. Then, there exists a good
edge weighting for . It follows from Lemma 2.1 applied
to that for all . This is clearly not a
good edge weighting for , a contradiction.

Proof: [Proof of Lemma 3.5]: The proof is by induction
on . Let be the block decomposition
of . It follows from Theorem 3.3 that is either of the type
or of the type, and for at most one value of , is of the
type. Since, inductively, every proper subgraph of satisfies
SLoP, it suffices to find a good edge weighting . Suppose first
that has a leaf block of the type. If , then let
be the cut-node of in . If , let be
arbitrary. There are four cases.
1) is isomorphic to : Let denote the nodes of .
Let for all edges incident with and for
every other edge . Let be a maximal matching in . If

, then, since is a matching, does not contain
any other edge with and, hence,
. If , then, since is maximal, contains an
edge incident with and, hence, . Since
this is true for every maximal matching of , it follows
that is a good edge weighting for .

2) is isomorphic to : Let denote the nodes of
, and let for all and for

every other edge . Let be a maximal matching in .
If , then, since is a matching, does not
contain either of , and, hence, . If

, then, since is maximal and is a matching,
exactly one of , is in and, hence,
. Since this is true for every maximal matching of ,
it follows that is a good edge weighting for .

3) is isomorphic to : Let denote the nodes
of , and let and

for all . To see
that this is a good edge weighting, let be a maximal
matching in . Suppose that does not contain any of
the edges . Since does not contain
and is maximal, it follows that contains either
or . Assume without loss of generality that .
Now, we may add to to obtain a larger matching, a
contradiction. It follows that . Since this
is true for every maximal matching of , it follows that
is a good edge weighting for .

4) is isomorphic to or for some : Let
such that and is an indepen-

dent set. Let , and let .
First, suppose that is isomorphic to and .
We may assume that . Set
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and for all other edges . Let
be a maximal matching in . Suppose that does not use
any of the edges . Since is a matching,
at least one of the edges , is not in , say .
However, now we may add to to obtain a larger
matching, a contradiction. It follows that .
Since this is true for every maximal matching of , it
follows that is a good edge weighting for . This solves
the case when is isomorphic to and . Thus,
we may assume this is not the case.
We claim that contains two nodes , of degree 2 such
that is a clone of . Suppose that . Then, let

, . It follows that and
is a clone of . Therefore, we may assume that .

We may assume that . Suppose that . Then,
let , . Then, and is
a clone of . Thus, we may assume that . From the
above, it follows that is isomorphic to . Let ,

. It follows that and is a
clone of . Now, the result follows from Lemma 3.4.

Thus, we may assume that does not have a leaf block of
the type. Since if , has at least two leaf blocks, and
hence at least one leaf block of the type, we may assume
that and is of the type. First, suppose that

. Then, it follows from the definition of
that there exist two nodes such that
and . It follows from Lemma 3.4 that there

exists a good edge weighting for . Hence, we may assume that
. Suppose first that . It follows from the

definition of that is a 5-cycle plus some arbitrary additional
edges. Clearly, no maximal matching has size 1. Hence, since

, it follows that every maximal matching in has
size exactly 2. Therefore, for all is a good
edge weighting for . Therefore, we may assume that .
Clearly, has no maximal matching of size 1. It is also easy
to see that has no maximal matching of size 2. Hence, since

, it follows that every maximal matching in has
size exactly 3 and therefore for all is a
good edge weighting for .

Proof: [Proof of Lemma 3.6]: We may assume that is
connected because, if not, the lemma follows from considering
each connected component of . We first claim that

for all . Let , and let be a longest
cycle in . It follows from the definition of that

. Clearly, we have
. This

proves the claim. Next, we claim that
for all . If is isomorphic to , then

. If is isomorphic to or for some ,
then . This proves
the claim.
Now, let be an -free graph, and let be

the block decomposition of . We prove by induction on that
. If , it follows from the above that

. Let . Since
has at least two leaf blocks and at most one block is in , we

choose such that is a leaf block and is of the type. Let
be the unique cut-node of that lies in . By induction, the

graph has at most
edges. From the above, since is of the type,

. Hence,
.

The following two lemmas will be used in the proof of
Theorem 3.2.
Lemma 2.2: It can be decided in time whether a

given graph is of the type.
Proof: Wemay assume that because, if

not, then it follows from Lemma 3.6 that is not of the type.
For any fixed , finding a cycle of length at least in a given
graph , if it exists, can be done in time [3].
The following algorithm uses the algorithm in [3] multiple times
to recognize graphs of the type.

1) For , 7, 6, 5, do:
Check if contains a cycle of length or more. If
so, let be the cycle and go to step 3.

2) does not contain a cycle of length 5 or larger, and
hence is not of the type, and we return NO.

3) Let . If , then is not of the
type, and we return NO.
Let be the nodes of in order. If ,
check that the “inner edges” of are as in the definition
of . If not, is not of the type, and we return NO.
For , do:

Let be the nodes in that are
adjacent to exactly and .

If and , then is not of the
type, and we return NO.
If , then is not of the
type and return NO.

4) is of the type, and we return YES.

Note that this algorithm takes time.
Lemma 2.3: It can be decided in time whether a

given graph is of the type.
Proof: We may assume that because,

if not, then it follows from Lemma 3.6 that is not of the
type. Clearly, it can be checked in constant time whether is
isomorphic to , , , or . Thus, we may assume
that is either isomorphic to or for some , or
is not of the type. Let be the set of nodes of

degree 2. If , then is not of the type
and we may stop. Otherwise, let . We
need to check that is an independent set and is complete
to . If so, then is of the type and we may stop.
If not, then is not of the type and we may stop. Notice
that, since , the check above can be done in

time.
Proof: [Proof of Theorem 3.2]: We may assume that

is connected. By Theorems 3.1 and 3.3, it suffices to check
whether admits the structure described in Theorem 3.3. We
propose the following algorithm. Let and

. First, we check that because otherwise is not
-free by Lemma 3.6 and we stop immediately. Now, construct

the block decomposition of . This can, in
general, be done in time (see, e.g., [11]). However,
since we know that , this step actually takes time.
For each block , we test whether is of the type. This
can be done time by Lemma 2.3. If has more
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than one block that is not of the type, then is not -free
and we stop. If we encounter no such block, then is -free
and we stop. Thus, let be the unique block that is not of the
type. It follows from Lemma 2.2 that it can be decided in

time whether is of the type or not. If it is,
then is -free and we stop. If not, then is not -free and
we stop.

APPENDIX III
PROOF OF LEMMA 4.2 (SECTION IV)

Lemma 3.1: Let be a bipartite graph with bipartition .
If and for all , then every maximal
matching in has size at least .

Proof: The proof is by induction on . The lemma is clearly
true for . Thus, let . Let be a maximal matching in
. Since is not anticomplete to , it follows that contains

an edge with , . Let ,
, and . Clearly, is a

maximal matching in , and
for all . Hence, it follows by induction that
and therefore that .

Proof: [Proof of Lemma 4.2]: Write and
. It follows from Lemma 4.1.(b)-(c) that we may assume

that for all . If , then
by Lemma 2.1. We may therefore assume that .
Let such that and are independent sets.

Let be a maximal matching of size . Let , be the set of
nodes in , , respectively, that are covered by . Let

and . Since is maximal, is anticomplete
to . Moreover, since for all , every

has at least three neighbors in , and every has at
least three neighbors in . Let be the edges
between and , and , and and , respectively. Since
is anticomplete to , we have .

We claim that

(6)

Proof of the Claim: Suppose to the contrary that
, and let be a maximal matching in . Let
, , . First, we have

. Second, since every edge in
covers a unique node in , it follows that .
Therefore, . Since this is true for every maximal
matching , it follows that . However, this means
that , contrary to our assumption. Hence,
and, by the symmetry, that . This proves the claim.
If , then, since every node in has at least three

neighbors in , it follows that , contrary to (6). Hence,
. It follows from (6) and if , then , ,

and if , then , . Define

if

if .

We need to prove that for every max-
imal matching in . Therefore, let be amaximal matching
in . Since every edge in is incident with a node of ,
it is easy to see that . Let .

It suffices to show that and that
, because if so, then

for

From symmetry, it suffices to show that .
Let be the nodes of that are not covered by . We may
assume that because otherwise there is nothing to
prove. Consider the graph . Clearly, we have

, , for all .
Moreover, is a maximal matching in . Hence, it
follows from Lemma 3.1 that .
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