
TRUE RANDOM NUMBER GENERATIONUSING PHYSICALLY UNCLONABLEFUNCTIONSA Major Qualifying Proje
tSubmitted to the Fa
ultyof theWor
ester Polyte
hni
 InstituteIn partial ful�llment of the requirements for theDegree of Ba
helor of S
ien
e inEle
tri
al and Computer Engineeringby
Berk BirandDate: April 24, 2008

APPROVED:
Professor Berk Sunar, Proje
t Advisor

Abstra
tAs embedded systems are be
oming ubiquitous, the need for low-power
ir
uits is in
reasing. An approa
h to redu
ing the
omplexityand power
onsumption of
hips is to reuse
omponents that are al-ready present on the
hip in alternative ways. Our design reuses thePhysi
ally Un
lonable Fun
tion, mostly used for authenti
ation, as aTrue Random Number Generator. With this approa
h, more se
ureauthenti
ation proto
ols that use randomness
an be devised withoutadding too mu
h
omplexity to the design.

A
knowledgmentsI would like to thank my advisor, Prof Berk Sunar for his
onstant supervisionthroughout the proje
t. He not only has introdu
ed me to formal a
ademi
resear
h, but has also paved the way for my Ph.D. I also would like to thankmy lab partners, Ghaith, Erdinç, Kahraman and Deniz for a

epting me intheir
lose-knit
ir
le, and for always being available to answer my questions.Although I am the author of this report, I
annot take full
redit for thiswork. I
ould not have a
hieved anything without the support and trust ofmy parents, Serda and Re�k, and my brother, Burak.

3

CONTENTS CONTENTSContents1 Introdu
tion 61.1 Problem Des
ription . 61.2 Proposed Solution . 61.3 Proje
t Goals . 72 Literature Review 82.1 Random Number Generation 82.1.1 Pseudo-Random Number Generators (PRNG) 82.1.2 True Random Number Generators (TRNG) 92.2 Physi
ally Un
lonable Fun
tions 92.3 Statisti
al Tests . 103 Requirements 114 Design Overview 124.1 Swit
h Blo
k Chain . 124.2 Arbiter and Metastability . 134.3 Feedba
k Loops . 154.4 State Ma
hine . 164.5 Serial Port Communi
ation . 174.6 PC Interfa
e Perl S
ript . 174.7 Pla
ement and Routing . 184.8 Sensitivity . 184.9 Post-Pro
essing by XORing 195 Implementation/Results 205.1 RTL Diagrams . 205.2 FPGA Editor Views . 245.3 NIST Test Results . 294

CONTENTS CONTENTS6 Future Work 327 Con
lusion 33A State Ma
hine Transition Diagram 36

5

1 INTRODUCTION1 Introdu
tion1.1 Problem Des
riptionWith the new advan
es in sili
on produ
tion te
hniques,
omputers are enter-ing every single part of our lives. Embedded systems
ontain
hips that areso small that they
an use the ambient ele
tromagneti
 radiation to generatetheir power.Having so many small
omputers bring their own problems. They havevery stri
t requirements, and sin
e they do not have that many resour
es,their use is really hard. The amount of resour
es that
an be allo
ated forthem makes them espe
ially prone to being a
tively ha
ked. Even on larger
hips, spa
e is always a premium.For instan
e,
hip spa
e and power
onsumption are big limitations onthe modern ultra-low-power devi
es. Sin
e
ryptographi
al
ir
uits are
om-putationally demanding, these smaller devi
es
annot use the bleeding-edgeproto
ols.1.2 Proposed SolutionIt is always ne
essary to minimize the
hip area and power
onsumption ofembedded systems. One approa
h to in
reasing the e�
ien
y of the
hip isto reuse some
omponents for several purposes. We propose the use of thePUF
ir
uits as a random number generator.The PUF
ir
uit uses the
hip's physi
al
hara
teristi
s to identify the
hip. They are frequently used for implementing authenti
ation proto
ols.By using a feedba
k me
hanism, our design exploits metastability in these
ir
uits to build a true hardware random number generator. Sin
e we areonly adding a small
ir
uit to the main PUF, our solution does not add asigni�
ant overhead in terms of power and area
onsumption.
6

1.3 Proje
t Goals 1 INTRODUCTION1.3 Proje
t GoalsThe goal of this proje
t is to design, implement and test the use of the PUFas a random number generator. The
ir
uit has �rst been designed a

ordingto some requirements. The PUF
ir
uit is implemented on a Xilinx XCVP30FPGA prototyping board. On
e the devi
e is shown to operate properly,we built a feedba
k loop around it to make it fun
tion as a random numbergenerator. On
e the implementation was
ompleted, the performan
e of theRNG was evaluated using statisti
al tests.

7

2 LITERATURE REVIEW2 Literature Review2.1 Random Number GenerationRandom number generators (RNGs) are used in �elds as varied as
ryptog-raphy to musi
. Although the restri
tions on the randomness of the numbersdepends on the appli
ation, the RNGs
an be
lassi�ed into two
ategories:Pseudo-Random Number Generators (PRNGs) and True Random NumberGenerators (TRNGs).2.1.1 Pseudo-Random Number Generators (PRNG)PRNGs use a deterministi
 algorithm to generate a sequen
e of numbersfrom an initial value,
alled the seed. Given the same seed, the PRNG willalways
ome up with the same sequen
e.There are many implementations of PRNG fun
tions. While most aremore suited for being programmed into a pro
essor, some others
an be easilyimplemented on digital hardware. One
ommom digital implementation of aPRNG is the linear feedba
k shift register (LFSR) is widely used on
hips asa PRNG. It is a shift register, where the bit that is shifted in with ea
h stateis a linear
ombination of the previous value (
al
ulated by XORing severalbits of the value). The register is initialized to a value, and on
e it is started,it keeps generating new numbers by
ontinuously shifting in new bits.The most
riti
al fa
tor when implementing a PRNG s
heme is the sour
eof the seed. For the system to work seamlessly like a real random numbergenerator, the seed must be really random. On
omputer systems,
ommonparameters su
h as date and time of the day, network a
tivity or mouse move-ments
an be made into a seed. This approa
h works well for appli
ationsthat do not require mu
h se
urity (e.g., movement of a
hara
ter in a gameor generation of musi
).PRNGs
an be seeded from true-random number generators on
ertaino

asions. These devi
es ar useful on systems where the TRNG works very8

2.2 Physi
ally Un
lonable Fun
tions 2 LITERATURE REVIEWslowly, and
annot generate a throughput ne
essary for the appli
ation. It isonly used initially to get a small initial value that is in
reased in length bythe PRNG.2.1.2 True Random Number Generators (TRNG)True Random Number Generators (TRNGs) rely on a physi
al sour
e ofentropy to generate the bitstream. The
ir
uit measures the entropy and
onverts it to bits. The means through whi
h this measurement is madedepends on the sour
e of the randomness. An analog ampli�er is used whenthermal noise is used as the physi
al sour
e. When radiation is used asa sour
e, a Geiger
ounter
an be employed. Other examples of entropysour
es in
lude avalan
he noise of a Zener diode, atmospheri
 noise, jitter inan os
illator ring or traveling photons.2.2 Physi
ally Un
lonable Fun
tionsPhysi
ally Un
lonable Fun
tions (PUFs) use the physi
al properties of the
hip on whi
h the
ir
uit is built to provide a se
ret. Using this approa
h, ase
ret key does not have to be stored on memory inside the
hip [LLG+05℄.The
hip virtually
annot be dupli
ated; to do so, one would need to man-ufa
ture a di�erent
hip with the exa
t same
hara
teristi
s as the originalone.In addition to being unique, PUFs also provide tamper resilien
e. Ifan atta
ker attempts to break the system by
hanging or monitoring theenvironmental
onditions, the physi
al parameters will
hange, rendering the
ir
uit unusuable.The original PUF fun
tions used opti
al patterns to provide the ran-domness [Rav01℄. The version that we are using relies on the variations inpropagation delays in the wires and gates [GCvDD03℄. More information onthis version of the PUF is available in Se
tion 4.9

2.3 Statisti
al Tests 2 LITERATURE REVIEWThe most important appli
ation of PUFs is in authenti
ation. Before thesystem is deployed, the behavior of the PUF is re
orded in a database. Itsoutput when given a set of
hallenges is stored for future use. When the
hip needs to be authenti
ated, a re
orded
hallenge is sent, and the givenresponse is
ompared to the one stored in the database. If the two mat
h,the devi
e is su

essfully authenti
ated.2.3 Statisti
al TestsBy analyzing a large dataset, it is possible to understand the distribution ofthe numbers, and gauge whether they are suitable for use in real appli
ations.Two of the most important test suites are Diehard [Die℄ and NIST [NIS℄. Forthe purpose of this proje
t, we used the NIST suite.NIST runs a series of tests on the given data. It sli
es the data into anumber of bitstreams, and performs the tests on ea
h bitstream individually.Two values are given for the results: a p-value and a proportion. The testsuites starts with the hypothesis that the bitstream is random (
alled the nullhypothesis). With ea
h test that it performs, the software tries to prove thatthe null hypothesis is
orre
t. The p-value is the probability that the nullhypothesis is true for the spe
i�
 test. The proportion value is the per
entageof the bitstreams that passed the tests. When the p-value and proportionvalues are higher than a
al
ulated threshold, the test is labeled as a pass,whi
h indi
ates that bitstream is random as far as the test goes.As an example, the frequen
y test
he
ks the o

uren
e of 0 and 1 in thestream to see if they behave like a real random number, whi
h is to say thereshould be the approximately the same number of ones and zeros. The runstest
he
ks if the
ontinuous groups of ones and zeros (
alled a runs) behavelike the output of an ideal TRNG.
10

3 REQUIREMENTS3 RequirementsBefore beginning the design of this proje
t, we need to establish the require-ments for our design.
• PUF ReusabilityThe RNG design should use the PUF that is already present in the
hip. The PUF will be used for some other job, su
h as authenti
ation.
• Area E�
ien
yThe implementation is geared towards low-power devi
es. It thereforeneeds to o

upy only a limited amount of area on the
hip. A typi
alguideline is to limit the use of the the
ryptographi

ir
uitry to lessthan 1000 gates.
• Tamper Resilien
eThe system needs to be tamper resilient, and should therefore invalidateits output when its used. Using the PUF
ir
uit as the sour
e of therandomization makes sure that the
ir
uit will indeed be tamper-proof.As explained in se
tion above, performing an atta
k on the
ir
uitmodi�es the
ir
uit parameters..
• Low-powerKeeping the power
onsumption at a minimum goes hand in hand withthe low area e�
ien
y. Smaller devi
es su
h as Wireless RFID devi
es,or wireless sensor networks do not have mu
h available power. The
ir
uit should work with minimal e�ort.

11

4 DESIGN OVERVIEW4 Design OverviewThis se
tion will summarize the design phase of the proje
t by visiting ea
hstep of the pro
ess, starting from the PUF design.4.1 Swit
h Blo
k ChainThe swit
h-based PUF
ir
uit relies on swit
hing blo
ks to forward the pulseto the next step [GCvDD03℄. The interfa
e to these blo
ks have three inputsand two outputs. The �rst two inputs a

ept the pulses
oming from theprevious blo
k. The third input takes in a one bit
hallenge. If the
hallengebit is a zero, then the pulses are sent dire
tly to the two outputs pins. Ifthe
hallenge bit is a one, then the inputs are alternated and relayed to theoutputs (input A goes to output B and vi
e versa). The
hallenge bit
anthus
ontrol the shape of the path the two pulses take.The swit
hing blo
ks are implemented using multiplexers. Two 2-to-1multiplexers are pla
ed in ea
h blo
k, and are both
onne
ted to the sameSELECT signal (see Figure 2).We need to a

ount for the internal optimizations in order to respe
t the
hain-like stru
ture of the design. Before pla
ing the VHDL
ode on theFPGA, the Xilinx environment attempts to optimize the stru
ture. It tendsto fuse the many blo
ks into an equivalent stru
ture that does not havea
hain stru
ture. Su
h optimizations must be disabled. We used VHDL
onstraints to tell the optimizer to pla
e ea
h of these
odes into exa
tly oneCLB, and not to pla
e anything else in there. Although this approa
h does
Figure 1: Swit
h
hain12

4.2 Arbiter and Metastability 4 DESIGN OVERVIEW

Figure 2: Inside of a swit
h blo
knot make the best use of the
hip spa
e on the FPGA, it is ne
essary tomaintain the
hara
teristi
s of the PUF
ir
uit.The PUFSwit
h_Down and PUFSwit
h_Up
omponents are two 2-to-1multiplexers. They are kept in their own entity �les in order to make surethey are pla
ed in sli
es of their own.The
ontent of the CLB blo
ks are shown in the Figures below. The
ontent of the Look-Up Table (LUT) is also shown, as
aptured from theXilinx FPGA Editor.4.2 Arbiter and MetastabilityIn order to measure whi
h of the pulses arrived at the destination, we will usea �ip-lop as an arbiter. A �ip-�op
ontained in the CLB blo
k is
onne
tedto the last swit
h blo
k as shown on Figure 3. One of the outputs of theswit
h blo
k is
onne
ted to the Clo
k (CLK) pin, and the other output to13

4.2 Arbiter and Metastability 4 DESIGN OVERVIEW
Figure 3: Last swit
h blo
k and arbiter

Figure 4: Timing of D and CLK signalsthe Data (D) pin.This setup of the �ip-�op allows us to measure whi
h of the two pulsesarrived at the end of the
hain �rst. If the
lo
k signal rea
hes the FF �rstthen a zero will be sampled (be
ause the D signal is still zero), whi
h willmake the output to be a zero. On the other hand, if the D signal arrives �rst,then D will be equal to one when the
lo
k pulse arrives, and the output willbe one. As it
an be seen from this dis
ussion, the output is expe
ted tobe one if pulse A arrives there and zero if pulse B arrives there. A timingdiagram of the arbiter is shown on Figure 4.There is however a third
ase that may a�e
t of the
ir
uit works. If thetwo signals arrive there almost at the same time, then the output will beunpredi
table. The data input to a �ip-�op should be held
onstant for a
ertain time
alled 'setup delay' before the
lo
k pulse o

urs.When the input does
hange within the setup window, the �ip-�op enters14

4.3 Feedba
k Loops 4 DESIGN OVERVIEWa metastable state. The output os
illates between 0 and 1, and keeps os
il-lating until it settles to one of them after an unde�ned amount of time. Thelikelihood for this state to persist de
reases exponentially with time. Thelonger the �ip-�op is in the metastable state the more likely it is to get outof it.This behavior is usually avoided, as it may render a state ma
hine tobehave unexpe
tedly. For the purpose of our random number generator, weare intentionally looking for the set of
hallenges that will generate unpre-di
table output bits. These
hallenges
reate two paths in the swit
h
hainthat are so
lose to ea
h other that the two pulses end up rea
hing the arbitervery
lose to ea
h other, thus violating the setup time. Sin
e the arbiter goesinto the metastable state, the output starts os
illating and �nally settles toa random value. The value that we obtaini thus is random, and is used toput the devi
e in a feedba
k loop.4.3 Feedba
k LoopsOur most important
ontribution to the PUF design is to add a feedba
kme
hanism around the swit
h
hain. We are feeding the sampled outputba
k into a left-shift register whose parallel outputs are mapped to the
hal-lenge pins of the swit
h blo
ks (see Figure 5). As a result, every time a bit issampled with the arbiter, a new
hallenge is obtained through the shift reg-ister. If the new bit is not random, the next state
an be predi
ted from theprevious one and the
ir
uit behaves expe
tedly. When the new bit
omesfrom the metastability of the �ip-�op, the next state
annot be predi
tedfrom the previous one.This setup allows the system to keep looping while generating new bits.With ea
h random number generated, the system will deviate from the typ-i
al output of a pseudo-random number generator. After a few loops, thesystem enters a state that is
ompletely unrelated to the initial state. Af-ter that point, the
ir
uit behaves like a random number generator, and the15

4.4 State Ma
hine 4 DESIGN OVERVIEW
Figure 5: Feedba
k loopsubsequent bits generated
an be used as part of a proto
ol.4.4 State Ma
hineThe PUF swit
h
hain and arbiter are entirely asyn
hronous and do notrequire a state ma
hine or a
lo
k signal to operate. To use the shift registerand to handle the serial
ommuni
ation with the
omputer, the
ir
uit needssome sequential logi
. This state ma
hine sends the pulses to initiate thePUF's fun
tion, and
olle
ts the output of the �ip-�op. It shifts the bit intothe register, and sends the result to the
omputer through serial port. Thissequen
e is repeated ad in�nitum to keep generating bits.State ma
hine's are written in VHDL, but they
an be more easily visu-alized through diagrams. One of the most popular ways of showing a statediagram is through an �Algorithmi
 State Ma
hine� (ASM) diagram. On thegraph, ea
h state is des
ribed by a re
tangular blo
k, and ea
h de
ision by anoval blo
k. The arrows indi
ate the
hange in states, and the blo
ks
ontainthe signals that are modi�ed in that state. Although ASM diagrams makethe design easier to implement, they are not too useful for
ommuni
atingthe overall pi
ture of the state ma
hine. For this purpose, we have
reated astate transition diagram, shown on appendix A.

16

4.5 Serial Port Communi
ation 4 DESIGN OVERVIEW4.5 Serial Port Communi
ationOur proposed design is geared for use in embedded systems. The generatedbitstream
an dire
tly be interfa
ed through an on-
hip bus, and
an be madeavailable to the mi
ro
ontroller. During the development, we need to
ontrolit from a
omputer in order to initiate ea
h
y
le of the number generation,but also to
olle
t the output for later analysis.We have de
ided to use the serial port for this
ommuni
ation. This
hoi
ewas mostly di
tated by our development board, sin
e serial
ommuni
ation isthe only one natively supported (a parallel port extension was also available).The other advantage of this sele
tion is the ease of use. We managed to �ndVHDL modules that we
ould integrate into our
ode.We built the serial port
onne
tion using an UART module found on [Ope℄. The module hides all the internal
omplexities of RS-232
ommuni
ation,and makes it available through a simpler interfa
e. The
lo
k runs at halfthe speed of the built-in
lo
k, 50 MHz. There are two registers for there
eive and the transmit bu�ers, and two
ontrol signals (transmit-readyand re
eived) for
he
king whether the bu�ers are ready for the next
y
le.4.6 PC Interfa
e Perl S
riptOn the PC side, we wrote a Perl s
ript for
ommuni
ating with the board.The job of this s
ript is to send a signal to the board to let it generate ea
hrandom number, and return it to the
omputer. The development environ-ment was a Windows XP ma
hine, and we therefore had to get Cygwin [Cyg℄to run Perl properly.The Win32::SerialPort module was used for
ommuni
ating with theboard. It supports a very intuitive interfa
e. We �rst
on�gured the serialport
onne
tion parameters su
h as
onne
tion speed and parity bits. Thetwo fun
tions read and write are used to re
eive and transmit Perl
hara
tersstrings over the
onne
tion. 17

4.7 Pla
ement and Routing 4 DESIGN OVERVIEW4.7 Pla
ement and RoutingFor the PUF
ir
uit to work e�e
tively, the paths formed by the swit
h
hainmust have even delays. The ra
e
ondition would otherwise not be possible;one of the paths would always be slower, introdu
ing a bias to the output. OnFPGAs, the design tool is responsible for the pla
ement, that is, for de
idingwhere to put the logi
. Su
h de
isions are usually made for e�e
tively usingthe
hip area. On
e the blo
ks have been pla
ed, the internal
onne
tionsare
onne
ted during the synthesis step known as routing.We needed to manually �ne-tune the pla
ement and routing phases inorder to maintain even paths. The VHDL language has several
onstraining
ommands for sele
ting the pre
ise lo
ation where ea
h blo
k will be pla
ed.The blo
ks �rst need to be grouped together using relative
oordinates su
has �blo
k A will be lo
ated above blo
k B.� The big group
ontaining themultiplexer swit
hes
an then be pla
ed using absolute positioning. We linedup the blo
ks verti
ally starting from the bottom-left
orner of the FPGA.When the blo
ks were pla
ed with even distan
es between them, therouting done by the synthesis tool was adequate and did not need any tweaks.To make sure that the two paths were of equal length, we ran a simplebias test whi
h
ounts the number of zeros and ones in a random bitstream.If the paths are indeed equal, the number of ones and zeros in a large setof output data should be equal. In the tests we have performed, we haveobtained very good bias results (49.82% and 50.18%), indi
ating that thepaths are not biased.4.8 SensitivityThe design is very sensitive to the pla
ement of the state ma
hine
ir
uitry.When side
ir
uit was
lose, the outputs we got were not as predi
table.However, when we isolated the PUF from the rest of the
ir
uit, we gotbetter results when trying to model the behavior. We
an explain this by the18

4.9 Post-Pro
essing by XORing 4 DESIGN OVERVIEWfa
t that the pulses are easily in�uen
ed with surrounding
ir
uitry. If thereare surrounding CLBs that are swit
hing while the pulses are ra
ing, the
ross talk
an a�e
t the paths. Making sure that there are no other usablesli
es in the region redu
es the error rate when the PUF is run by itself. Forthe purpose of the random number generator, we did not isolate the
ir
uitso that we would get less predi
table results.4.9 Post-Pro
essing by XORingIn order to further in
rease the result of the statisti
al tests that we ran, weperformed some post-pro
essing on the data. We managed to improve theresults of the NIST tests dramati
ally by using an XORing
ir
uit.In the
urrent s
heme, a stream of bits is generated by the arbiter �ip-�op. As explained in se
tion 4.3, some of these bits
an be random whileothers not. Ideally, we would have wanted to somehow guess whi
h ones arerandom, and only send those to the output. Realisti
ally, making su
h ade
ision is impra
ti
al, but we
an a
hieve the same e�e
t by using a digitaltri
k.XOR is a binary operation that evaluates to a '1' when the two inputbits are di�erent, and '0' when they are the same. Our post-pro
essings
heme is built on XORing bits this way by groups of 8 bits. Out of thisgroup, it su�
es to have one random bit to give a result that is also random.Although this pro
ess in
reases the randomness results, it also de
reases thethroughput of the generator. It e�e
tively slows it down eightfold, sin
e ittakes eight times the time to generate one bit.We applied this method using a Perl s
ript on the output �les. Imple-menting it on the
ir
uit would not add too mu
h overhead either. By havingone XOR gate and one �ip-�op, the operation
an be implemented serially.Ea
h time a new bit is generated, it is XORed with the previous value of the�ip-�op, and simultaneously saved for the next
y
le.19

5 IMPLEMENTATION/RESULTS

Figure 6: Beginning of swit
h
hain as a Te
hnology S
hemati
5 Implementation/ResultsWe have implemented our design on a Xilinx University Program (XUP)Virtex-II Pro development system that has a XC2VP30 FPGA. This se
tionwill present the implementation of the system, and provide statisti
al testsfor showing that the results are random.5.1 RTL DiagramsThis se
tion
ontains s
reenshots from the Xilinx ISE tool des
ribing thevarious parts of the design. The
on�guration of the swit
h
hain is shownon Figure 6. The two initial �ip-�ops are used for sending the pulses, andea
h Look-Up Table (LUT) implements half of the swit
h blo
k. The outputsof ea
h blo
k is sent to the next level.The arbiter
an be observed on Figure 7. The entire swit
h
hain ismodeled using a single blo
k on the left of the pi
ture, and its two outputs,
Qa and Qb are
onne
ted to the �ip-�op.

20

5.1 RTL Diagrams 5 IMPLEMENTATION/RESULTS

Figure 7: End of swit
h
hain and arbiter

Figure 8: S
hemati
 of the LUT multiplexer fun
tion21

5.1 RTL Diagrams 5 IMPLEMENTATION/RESULTS

Figure 9: Truth Table for LUT swit
h fun
tion
22

5.1 RTL Diagrams 5 IMPLEMENTATION/RESULTS

Figure 10: Karnaugh Map for the LUT swit
h fun
tion
23

5.2 FPGA Editor Views 5 IMPLEMENTATION/RESULTS5.2 FPGA Editor ViewsThe s
reenshots in this se
tion help to explain the stru
ture of the
ir
uit aspla
ed by the Xilinx tool. They have been obtained from the FPGA editorappli
ation that is a standard
omponent of the toolkit.Figure 11 shows the pla
ement of the swit
h blo
ks in the FPGA CLBs.The CLBs
ontaining the blo
ks are highlighted in red. It
an be seen thatthey are pla
ed verti
ally. An overall view of the zoomed out FPGA is shownon Figure 12. The
hain o

upies the
enter of the
hip, and almost
overs itsentire length. Other
ir
uitry, su
h as that of the state ma
hine is interspreadbetween the blo
ks.The FPGA editor also allows us to zoom into the sli
e to show the routingof the signals inside the
hip. Figure 13 shows how this routing is performedfor a swit
hing blo
k
ontaining two multiplexers. It
an be seen that bothof the Look-Up Tables (LUTs) are used for the swit
hing fun
tion, but the�ip-�ops are bypassed. The output signals are then routed to the next blo
k.The same
lose-up pi
ture is shown for the arbiter on Figure 14. The twoinputs are dire
tly
onne
ted to one of the �ip-�ops found in the sli
e, sothey
an be sampled at their output.Figures 8 to 10 show the
ontent of the LUTs using various methods.

24

5.2 FPGA Editor Views 5 IMPLEMENTATION/RESULTS

Figure 11: View of the swit
h
hain (blo
k in red)
25

5.2 FPGA Editor Views 5 IMPLEMENTATION/RESULTS

Figure 12: Overall FPGA
hip
26

5.2 FPGA Editor Views 5 IMPLEMENTATION/RESULTS

Figure 13: Content of sli
e
ontaining swit
hing blo
k
27

5.2 FPGA Editor Views 5 IMPLEMENTATION/RESULTS

Figure 14: Content of sli
e
ontaining arbiter
28

5.3 NIST Test Results 5 IMPLEMENTATION/RESULTS5.3 NIST Test ResultsThe output of the NIST test suite for our �nal design is shown on �gure 15.The output shows that the random number generator passed almost all thetests. The failed tests are marked with an asterix. On this test run, onlyfour of the tests failed to prove the null hypothesis.Another output �le of the test is shown on �gure 16. This �le shows thefrequen
y of ones and zeros in the output, for ea
h of the bitstreams. It
an be seen that there almost as many ones as zeros, whi
h is an additionalsanity
he
k to show that the system behaves as expe
ted.

29

5.3 NIST Test Results 5 IMPLEMENTATION/RESULTS
---------------------------------------P-VALUE PROPORTION STATISTICAL TEST---------------------------------------0.637119 1.0000 frequen
y0.213309 1.0000 blo
k-frequen
y0.964295 1.0000
umulative-sums0.834308 1.0000
umulative-sums0.090936 1.0000 runs0.000000 * 1.0000 longest-run0.162606 1.0000 rank0.162606 1.0000 fft0.035174 0.9750 nonperiodi
-templates0.213309 0.9750 overlapping-templates0.000000 * 1.0000 universal0.122325 0.9750 apen0.585209 0.9750 serial0.788728 0.9750 serial0.000000 * 1.0000 lempel-ziv0.739918 0.9250 * linear-
omplexity- - - - - - - - - - - - - - -- - - - - - - - - - - - -The minimum pass rate for ea
h statisti
al test withthe ex
eption of the random ex
ursion (variant) testis approximately = 0.942804 for a sample size = 40binary sequen
es.Figure 15: Output of the NIST test suite

30

5.3 NIST Test Results 5 IMPLEMENTATION/RESULTS

__FILE = run1_80_xor_by_8_40bs.dat ALPHA = 0.0100__BITSREAD = 20000 0s = 10073 1s = 9927BITSREAD = 20000 0s = 9852 1s = 10148BITSREAD = 20000 0s = 10001 1s = 9999BITSREAD = 20000 0s = 10013 1s = 9987BITSREAD = 20000 0s = 10132 1s = 9868BITSREAD = 20000 0s = 10032 1s = 9968BITSREAD = 20000 0s = 10064 1s = 9936BITSREAD = 20000 0s = 9968 1s = 10032BITSREAD = 20000 0s = 9889 1s = 10111BITSREAD = 20000 0s = 9968 1s = 10032BITSREAD = 20000 0s = 9878 1s = 10122BITSREAD = 20000 0s = 10092 1s = 9908BITSREAD = 20000 0s = 9875 1s = 10125Figure 16: Bias output of the NIST test suite

31

6 FUTURE WORK6 Future WorkA suggested future work would be to test the design at di�erent temperaturelevels to see how the
ir
uit is a�e
ted. Normally variations in temperatureshould not a�e
t the behavior of the
ir
uit, sin
e both paths are
hangingat the same time. However the randomness of the system may depend onthe ambeint temperature.The usefulness of the system
an also be tested by using the
ir
uit aspart of a larger s
heme, su
h as a
ryptographi
 proto
ol. The bitstream
anbe interfa
ed by a larger state ma
hine that
an use the bits as part of aproto
ol.

32

7 CONCLUSION7 Con
lusionWe have shown that the Physi
ally Un
lonable Fun
tion made from swit
h-
hains
an alternatively be used as a hardware random number generator.Using the metastability in the arbiter, we built a prototype that is suitable formany appli
ations, espe
ially that of
ryptographi
 authenti
ation proto
ols.We have tested the output of the randomness, and have
on
luded that formost pra
ti
al appli
ations the system behaves unpredi
tably.

33

REFERENCES REFERENCESReferen
es[Cyg℄ Cygwin Information and Installation. www.
ygwin.
om/. A
-
essed April 24, 2008.[Die℄ Diehard Battery of Tests of Randomness. http://www.stat.fsu.edu/pub/diehard/. A

essed April 24, 2008.[GCvDD02℄ Blaise Gassend, Dwaine Clarke, Marten van Dijk, and SrinivasDevadas. Sili
on physi
al random fun
tions. In CCS '02: Pro-
eedings of the 9th ACM
onferen
e on Computer and
ommu-ni
ations se
urity, pages 148�160, New York, NY, USA, 2002.ACM.[GCvDD03℄ B. Gassend, D. Clarke, M. van Dijk, and S. Devadas. Delay-based Cir
uit Authenti
ation and Appli
ations. In Pro
eedingsof the 2003 ACM Symposium on Applied Computing, pages 294�301, 2003.[LDG+04℄ J. W. Lee, L. Daihyun, B. Gassend, G. E. Suh amd M. van Dijk,and S. Devadas. A te
hnique to build a se
ret key in integrated
ir
uits for identi�
ation and authenti
ation appli
ations. InSymposium of VLSI Cir
uits, pages 176�179, 2004.[LLG+05℄ Daihyun Lim, Jae W. Lee, Blaise Gassend, G. Edward Suh,Marten van Dijk, and Srinivas Devadas. Extra
ting se
ret keysfrom integrated
ir
uits. IEEE Trans. VLSI Syst., 13(10):1200�1205, 2005.[NIS℄ Nist Random Number Generation and Testing. http://
sr
.nist.gov/groups/ST/toolkit/rng/index.html. A
-
essed April 24, 2008.[Ope℄ OpenCores.org. http://open
ores.org/. A

essed April 24,2008. 34

REFERENCES REFERENCES[OSD04℄ Charles W. O'Donnell, G. Edward Suh, and Srinivas Devadas.Puf-based random number generation. Number 481, November2004.[Pos98℄ R. Pos
h. Prote
ting Devi
es by A
tive Coating. Journal ofUniversal Computer S
ien
e, 4(7):652�668, 1998.[Rav01℄ Pappu Srinivasa Ravikanth. Physi
al one-way fun
tions. PhDthesis, 2001. Chair-Stephen A. Benton.[SMKT06℄ B. Skori
, S. Mauba
h, T. Kevenaar, and P. Tuyls. Information-theoreti
 Analysis of Coating PUFs. Cryptology ePrint Ar
hive,Report 2006/101, 2006.[TS06℄ P. Tuyls and B. Skori
. Se
ret Key Generation from Classi-
al Physi
s: Physi
al Un
loneable Fun
tions. In S. Mukherjee,E. Aarts, R. Roovers, F. Widdershoven, and M. Ouwerkerk, ed-itors, AmIware: Hardware Te
hnology Drivers of Ambient In-telligen
e, volume 5 of Philips Resear
h Book Series. Springer-Verlag, Sep 2006.

35

A STATE MACHINE TRANSITION DIAGRAMA State Ma
hine Transition Diagram

36

A STATE MACHINE TRANSITION DIAGRAM

37

