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Abstra
tAs embedded systems are be
oming ubiquitous, the need for low-power 
ir
uits is in
reasing. An approa
h to redu
ing the 
omplexityand power 
onsumption of 
hips is to reuse 
omponents that are al-ready present on the 
hip in alternative ways. Our design reuses thePhysi
ally Un
lonable Fun
tion, mostly used for authenti
ation, as aTrue Random Number Generator. With this approa
h, more se
ureauthenti
ation proto
ols that use randomness 
an be devised withoutadding too mu
h 
omplexity to the design.
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1 INTRODUCTION1 Introdu
tion1.1 Problem Des
riptionWith the new advan
es in sili
on produ
tion te
hniques, 
omputers are enter-ing every single part of our lives. Embedded systems 
ontain 
hips that areso small that they 
an use the ambient ele
tromagneti
 radiation to generatetheir power.Having so many small 
omputers bring their own problems. They havevery stri
t requirements, and sin
e they do not have that many resour
es,their use is really hard. The amount of resour
es that 
an be allo
ated forthem makes them espe
ially prone to being a
tively ha
ked. Even on larger
hips, spa
e is always a premium.For instan
e, 
hip spa
e and power 
onsumption are big limitations onthe modern ultra-low-power devi
es. Sin
e 
ryptographi
al 
ir
uits are 
om-putationally demanding, these smaller devi
es 
annot use the bleeding-edgeproto
ols.1.2 Proposed SolutionIt is always ne
essary to minimize the 
hip area and power 
onsumption ofembedded systems. One approa
h to in
reasing the e�
ien
y of the 
hip isto reuse some 
omponents for several purposes. We propose the use of thePUF 
ir
uits as a random number generator.The PUF 
ir
uit uses the 
hip's physi
al 
hara
teristi
s to identify the
hip. They are frequently used for implementing authenti
ation proto
ols.By using a feedba
k me
hanism, our design exploits metastability in these
ir
uits to build a true hardware random number generator. Sin
e we areonly adding a small 
ir
uit to the main PUF, our solution does not add asigni�
ant overhead in terms of power and area 
onsumption.
6



1.3 Proje
t Goals 1 INTRODUCTION1.3 Proje
t GoalsThe goal of this proje
t is to design, implement and test the use of the PUFas a random number generator. The 
ir
uit has �rst been designed a

ordingto some requirements. The PUF 
ir
uit is implemented on a Xilinx XCVP30FPGA prototyping board. On
e the devi
e is shown to operate properly,we built a feedba
k loop around it to make it fun
tion as a random numbergenerator. On
e the implementation was 
ompleted, the performan
e of theRNG was evaluated using statisti
al tests.
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2 LITERATURE REVIEW2 Literature Review2.1 Random Number GenerationRandom number generators (RNGs) are used in �elds as varied as 
ryptog-raphy to musi
. Although the restri
tions on the randomness of the numbersdepends on the appli
ation, the RNGs 
an be 
lassi�ed into two 
ategories:Pseudo-Random Number Generators (PRNGs) and True Random NumberGenerators (TRNGs).2.1.1 Pseudo-Random Number Generators (PRNG)PRNGs use a deterministi
 algorithm to generate a sequen
e of numbersfrom an initial value, 
alled the seed. Given the same seed, the PRNG willalways 
ome up with the same sequen
e.There are many implementations of PRNG fun
tions. While most aremore suited for being programmed into a pro
essor, some others 
an be easilyimplemented on digital hardware. One 
ommom digital implementation of aPRNG is the linear feedba
k shift register (LFSR) is widely used on 
hips asa PRNG. It is a shift register, where the bit that is shifted in with ea
h stateis a linear 
ombination of the previous value (
al
ulated by XORing severalbits of the value). The register is initialized to a value, and on
e it is started,it keeps generating new numbers by 
ontinuously shifting in new bits.The most 
riti
al fa
tor when implementing a PRNG s
heme is the sour
eof the seed. For the system to work seamlessly like a real random numbergenerator, the seed must be really random. On 
omputer systems, 
ommonparameters su
h as date and time of the day, network a
tivity or mouse move-ments 
an be made into a seed. This approa
h works well for appli
ationsthat do not require mu
h se
urity (e.g., movement of a 
hara
ter in a gameor generation of musi
).PRNGs 
an be seeded from true-random number generators on 
ertaino

asions. These devi
es ar useful on systems where the TRNG works very8



2.2 Physi
ally Un
lonable Fun
tions 2 LITERATURE REVIEWslowly, and 
annot generate a throughput ne
essary for the appli
ation. It isonly used initially to get a small initial value that is in
reased in length bythe PRNG.2.1.2 True Random Number Generators (TRNG)True Random Number Generators (TRNGs) rely on a physi
al sour
e ofentropy to generate the bitstream. The 
ir
uit measures the entropy and
onverts it to bits. The means through whi
h this measurement is madedepends on the sour
e of the randomness. An analog ampli�er is used whenthermal noise is used as the physi
al sour
e. When radiation is used asa sour
e, a Geiger 
ounter 
an be employed. Other examples of entropysour
es in
lude avalan
he noise of a Zener diode, atmospheri
 noise, jitter inan os
illator ring or traveling photons.2.2 Physi
ally Un
lonable Fun
tionsPhysi
ally Un
lonable Fun
tions (PUFs) use the physi
al properties of the
hip on whi
h the 
ir
uit is built to provide a se
ret. Using this approa
h, ase
ret key does not have to be stored on memory inside the 
hip [LLG+05℄.The 
hip virtually 
annot be dupli
ated; to do so, one would need to man-ufa
ture a di�erent 
hip with the exa
t same 
hara
teristi
s as the originalone.In addition to being unique, PUFs also provide tamper resilien
e. Ifan atta
ker attempts to break the system by 
hanging or monitoring theenvironmental 
onditions, the physi
al parameters will 
hange, rendering the
ir
uit unusuable.The original PUF fun
tions used opti
al patterns to provide the ran-domness [Rav01℄. The version that we are using relies on the variations inpropagation delays in the wires and gates [GCvDD03℄. More information onthis version of the PUF is available in Se
tion 4.9



2.3 Statisti
al Tests 2 LITERATURE REVIEWThe most important appli
ation of PUFs is in authenti
ation. Before thesystem is deployed, the behavior of the PUF is re
orded in a database. Itsoutput when given a set of 
hallenges is stored for future use. When the
hip needs to be authenti
ated, a re
orded 
hallenge is sent, and the givenresponse is 
ompared to the one stored in the database. If the two mat
h,the devi
e is su

essfully authenti
ated.2.3 Statisti
al TestsBy analyzing a large dataset, it is possible to understand the distribution ofthe numbers, and gauge whether they are suitable for use in real appli
ations.Two of the most important test suites are Diehard [Die℄ and NIST [NIS℄. Forthe purpose of this proje
t, we used the NIST suite.NIST runs a series of tests on the given data. It sli
es the data into anumber of bitstreams, and performs the tests on ea
h bitstream individually.Two values are given for the results: a p-value and a proportion. The testsuites starts with the hypothesis that the bitstream is random (
alled the nullhypothesis). With ea
h test that it performs, the software tries to prove thatthe null hypothesis is 
orre
t. The p-value is the probability that the nullhypothesis is true for the spe
i�
 test. The proportion value is the per
entageof the bitstreams that passed the tests. When the p-value and proportionvalues are higher than a 
al
ulated threshold, the test is labeled as a pass,whi
h indi
ates that bitstream is random as far as the test goes.As an example, the frequen
y test 
he
ks the o

uren
e of 0 and 1 in thestream to see if they behave like a real random number, whi
h is to say thereshould be the approximately the same number of ones and zeros. The runstest 
he
ks if the 
ontinuous groups of ones and zeros (
alled a runs) behavelike the output of an ideal TRNG.
10



3 REQUIREMENTS3 RequirementsBefore beginning the design of this proje
t, we need to establish the require-ments for our design.
• PUF ReusabilityThe RNG design should use the PUF that is already present in the
hip. The PUF will be used for some other job, su
h as authenti
ation.
• Area E�
ien
yThe implementation is geared towards low-power devi
es. It thereforeneeds to o

upy only a limited amount of area on the 
hip. A typi
alguideline is to limit the use of the the 
ryptographi
 
ir
uitry to lessthan 1000 gates.
• Tamper Resilien
eThe system needs to be tamper resilient, and should therefore invalidateits output when its used. Using the PUF 
ir
uit as the sour
e of therandomization makes sure that the 
ir
uit will indeed be tamper-proof.As explained in se
tion above, performing an atta
k on the 
ir
uitmodi�es the 
ir
uit parameters..
• Low-powerKeeping the power 
onsumption at a minimum goes hand in hand withthe low area e�
ien
y. Smaller devi
es su
h as Wireless RFID devi
es,or wireless sensor networks do not have mu
h available power. The
ir
uit should work with minimal e�ort.
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4 DESIGN OVERVIEW4 Design OverviewThis se
tion will summarize the design phase of the proje
t by visiting ea
hstep of the pro
ess, starting from the PUF design.4.1 Swit
h Blo
k ChainThe swit
h-based PUF 
ir
uit relies on swit
hing blo
ks to forward the pulseto the next step [GCvDD03℄. The interfa
e to these blo
ks have three inputsand two outputs. The �rst two inputs a

ept the pulses 
oming from theprevious blo
k. The third input takes in a one bit 
hallenge. If the 
hallengebit is a zero, then the pulses are sent dire
tly to the two outputs pins. Ifthe 
hallenge bit is a one, then the inputs are alternated and relayed to theoutputs (input A goes to output B and vi
e versa). The 
hallenge bit 
anthus 
ontrol the shape of the path the two pulses take.The swit
hing blo
ks are implemented using multiplexers. Two 2-to-1multiplexers are pla
ed in ea
h blo
k, and are both 
onne
ted to the sameSELECT signal (see Figure 2).We need to a

ount for the internal optimizations in order to respe
t the
hain-like stru
ture of the design. Before pla
ing the VHDL 
ode on theFPGA, the Xilinx environment attempts to optimize the stru
ture. It tendsto fuse the many blo
ks into an equivalent stru
ture that does not havea 
hain stru
ture. Su
h optimizations must be disabled. We used VHDL
onstraints to tell the optimizer to pla
e ea
h of these 
odes into exa
tly oneCLB, and not to pla
e anything else in there. Although this approa
h does
Figure 1: Swit
h 
hain12



4.2 Arbiter and Metastability 4 DESIGN OVERVIEW

Figure 2: Inside of a swit
h blo
knot make the best use of the 
hip spa
e on the FPGA, it is ne
essary tomaintain the 
hara
teristi
s of the PUF 
ir
uit.The PUFSwit
h_Down and PUFSwit
h_Up 
omponents are two 2-to-1multiplexers. They are kept in their own entity �les in order to make surethey are pla
ed in sli
es of their own.The 
ontent of the CLB blo
ks are shown in the Figures below. The
ontent of the Look-Up Table (LUT) is also shown, as 
aptured from theXilinx FPGA Editor.4.2 Arbiter and MetastabilityIn order to measure whi
h of the pulses arrived at the destination, we will usea �ip-lop as an arbiter. A �ip-�op 
ontained in the CLB blo
k is 
onne
tedto the last swit
h blo
k as shown on Figure 3. One of the outputs of theswit
h blo
k is 
onne
ted to the Clo
k (CLK) pin, and the other output to13



4.2 Arbiter and Metastability 4 DESIGN OVERVIEW
Figure 3: Last swit
h blo
k and arbiter

Figure 4: Timing of D and CLK signalsthe Data (D) pin.This setup of the �ip-�op allows us to measure whi
h of the two pulsesarrived at the end of the 
hain �rst. If the 
lo
k signal rea
hes the FF �rstthen a zero will be sampled (be
ause the D signal is still zero), whi
h willmake the output to be a zero. On the other hand, if the D signal arrives �rst,then D will be equal to one when the 
lo
k pulse arrives, and the output willbe one. As it 
an be seen from this dis
ussion, the output is expe
ted tobe one if pulse A arrives there and zero if pulse B arrives there. A timingdiagram of the arbiter is shown on Figure 4.There is however a third 
ase that may a�e
t of the 
ir
uit works. If thetwo signals arrive there almost at the same time, then the output will beunpredi
table. The data input to a �ip-�op should be held 
onstant for a
ertain time 
alled 'setup delay' before the 
lo
k pulse o

urs.When the input does 
hange within the setup window, the �ip-�op enters14



4.3 Feedba
k Loops 4 DESIGN OVERVIEWa metastable state. The output os
illates between 0 and 1, and keeps os
il-lating until it settles to one of them after an unde�ned amount of time. Thelikelihood for this state to persist de
reases exponentially with time. Thelonger the �ip-�op is in the metastable state the more likely it is to get outof it.This behavior is usually avoided, as it may render a state ma
hine tobehave unexpe
tedly. For the purpose of our random number generator, weare intentionally looking for the set of 
hallenges that will generate unpre-di
table output bits. These 
hallenges 
reate two paths in the swit
h 
hainthat are so 
lose to ea
h other that the two pulses end up rea
hing the arbitervery 
lose to ea
h other, thus violating the setup time. Sin
e the arbiter goesinto the metastable state, the output starts os
illating and �nally settles toa random value. The value that we obtaini thus is random, and is used toput the devi
e in a feedba
k loop.4.3 Feedba
k LoopsOur most important 
ontribution to the PUF design is to add a feedba
kme
hanism around the swit
h 
hain. We are feeding the sampled outputba
k into a left-shift register whose parallel outputs are mapped to the 
hal-lenge pins of the swit
h blo
ks (see Figure 5). As a result, every time a bit issampled with the arbiter, a new 
hallenge is obtained through the shift reg-ister. If the new bit is not random, the next state 
an be predi
ted from theprevious one and the 
ir
uit behaves expe
tedly. When the new bit 
omesfrom the metastability of the �ip-�op, the next state 
annot be predi
tedfrom the previous one.This setup allows the system to keep looping while generating new bits.With ea
h random number generated, the system will deviate from the typ-i
al output of a pseudo-random number generator. After a few loops, thesystem enters a state that is 
ompletely unrelated to the initial state. Af-ter that point, the 
ir
uit behaves like a random number generator, and the15



4.4 State Ma
hine 4 DESIGN OVERVIEW
Figure 5: Feedba
k loopsubsequent bits generated 
an be used as part of a proto
ol.4.4 State Ma
hineThe PUF swit
h 
hain and arbiter are entirely asyn
hronous and do notrequire a state ma
hine or a 
lo
k signal to operate. To use the shift registerand to handle the serial 
ommuni
ation with the 
omputer, the 
ir
uit needssome sequential logi
. This state ma
hine sends the pulses to initiate thePUF's fun
tion, and 
olle
ts the output of the �ip-�op. It shifts the bit intothe register, and sends the result to the 
omputer through serial port. Thissequen
e is repeated ad in�nitum to keep generating bits.State ma
hine's are written in VHDL, but they 
an be more easily visu-alized through diagrams. One of the most popular ways of showing a statediagram is through an �Algorithmi
 State Ma
hine� (ASM) diagram. On thegraph, ea
h state is des
ribed by a re
tangular blo
k, and ea
h de
ision by anoval blo
k. The arrows indi
ate the 
hange in states, and the blo
ks 
ontainthe signals that are modi�ed in that state. Although ASM diagrams makethe design easier to implement, they are not too useful for 
ommuni
atingthe overall pi
ture of the state ma
hine. For this purpose, we have 
reated astate transition diagram, shown on appendix A.
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4.5 Serial Port Communi
ation 4 DESIGN OVERVIEW4.5 Serial Port Communi
ationOur proposed design is geared for use in embedded systems. The generatedbitstream 
an dire
tly be interfa
ed through an on-
hip bus, and 
an be madeavailable to the mi
ro
ontroller. During the development, we need to 
ontrolit from a 
omputer in order to initiate ea
h 
y
le of the number generation,but also to 
olle
t the output for later analysis.We have de
ided to use the serial port for this 
ommuni
ation. This 
hoi
ewas mostly di
tated by our development board, sin
e serial 
ommuni
ation isthe only one natively supported (a parallel port extension was also available).The other advantage of this sele
tion is the ease of use. We managed to �ndVHDL modules that we 
ould integrate into our 
ode.We built the serial port 
onne
tion using an UART module found on [Ope℄. The module hides all the internal 
omplexities of RS-232 
ommuni
ation,and makes it available through a simpler interfa
e. The 
lo
k runs at halfthe speed of the built-in 
lo
k, 50 MHz. There are two registers for there
eive and the transmit bu�ers, and two 
ontrol signals (transmit-readyand re
eived) for 
he
king whether the bu�ers are ready for the next 
y
le.4.6 PC Interfa
e Perl S
riptOn the PC side, we wrote a Perl s
ript for 
ommuni
ating with the board.The job of this s
ript is to send a signal to the board to let it generate ea
hrandom number, and return it to the 
omputer. The development environ-ment was a Windows XP ma
hine, and we therefore had to get Cygwin [Cyg℄to run Perl properly.The Win32::SerialPort module was used for 
ommuni
ating with theboard. It supports a very intuitive interfa
e. We �rst 
on�gured the serialport 
onne
tion parameters su
h as 
onne
tion speed and parity bits. Thetwo fun
tions read and write are used to re
eive and transmit Perl 
hara
tersstrings over the 
onne
tion. 17



4.7 Pla
ement and Routing 4 DESIGN OVERVIEW4.7 Pla
ement and RoutingFor the PUF 
ir
uit to work e�e
tively, the paths formed by the swit
h 
hainmust have even delays. The ra
e 
ondition would otherwise not be possible;one of the paths would always be slower, introdu
ing a bias to the output. OnFPGAs, the design tool is responsible for the pla
ement, that is, for de
idingwhere to put the logi
. Su
h de
isions are usually made for e�e
tively usingthe 
hip area. On
e the blo
ks have been pla
ed, the internal 
onne
tionsare 
onne
ted during the synthesis step known as routing.We needed to manually �ne-tune the pla
ement and routing phases inorder to maintain even paths. The VHDL language has several 
onstraining
ommands for sele
ting the pre
ise lo
ation where ea
h blo
k will be pla
ed.The blo
ks �rst need to be grouped together using relative 
oordinates su
has �blo
k A will be lo
ated above blo
k B.� The big group 
ontaining themultiplexer swit
hes 
an then be pla
ed using absolute positioning. We linedup the blo
ks verti
ally starting from the bottom-left 
orner of the FPGA.When the blo
ks were pla
ed with even distan
es between them, therouting done by the synthesis tool was adequate and did not need any tweaks.To make sure that the two paths were of equal length, we ran a simplebias test whi
h 
ounts the number of zeros and ones in a random bitstream.If the paths are indeed equal, the number of ones and zeros in a large setof output data should be equal. In the tests we have performed, we haveobtained very good bias results (49.82% and 50.18%), indi
ating that thepaths are not biased.4.8 SensitivityThe design is very sensitive to the pla
ement of the state ma
hine 
ir
uitry.When side 
ir
uit was 
lose, the outputs we got were not as predi
table.However, when we isolated the PUF from the rest of the 
ir
uit, we gotbetter results when trying to model the behavior. We 
an explain this by the18



4.9 Post-Pro
essing by XORing 4 DESIGN OVERVIEWfa
t that the pulses are easily in�uen
ed with surrounding 
ir
uitry. If thereare surrounding CLBs that are swit
hing while the pulses are ra
ing, the
ross talk 
an a�e
t the paths. Making sure that there are no other usablesli
es in the region redu
es the error rate when the PUF is run by itself. Forthe purpose of the random number generator, we did not isolate the 
ir
uitso that we would get less predi
table results.4.9 Post-Pro
essing by XORingIn order to further in
rease the result of the statisti
al tests that we ran, weperformed some post-pro
essing on the data. We managed to improve theresults of the NIST tests dramati
ally by using an XORing 
ir
uit.In the 
urrent s
heme, a stream of bits is generated by the arbiter �ip-�op. As explained in se
tion 4.3, some of these bits 
an be random whileothers not. Ideally, we would have wanted to somehow guess whi
h ones arerandom, and only send those to the output. Realisti
ally, making su
h ade
ision is impra
ti
al, but we 
an a
hieve the same e�e
t by using a digitaltri
k.XOR is a binary operation that evaluates to a '1' when the two inputbits are di�erent, and '0' when they are the same. Our post-pro
essings
heme is built on XORing bits this way by groups of 8 bits. Out of thisgroup, it su�
es to have one random bit to give a result that is also random.Although this pro
ess in
reases the randomness results, it also de
reases thethroughput of the generator. It e�e
tively slows it down eightfold, sin
e ittakes eight times the time to generate one bit.We applied this method using a Perl s
ript on the output �les. Imple-menting it on the 
ir
uit would not add too mu
h overhead either. By havingone XOR gate and one �ip-�op, the operation 
an be implemented serially.Ea
h time a new bit is generated, it is XORed with the previous value of the�ip-�op, and simultaneously saved for the next 
y
le.19



5 IMPLEMENTATION/RESULTS

Figure 6: Beginning of swit
h 
hain as a Te
hnology S
hemati
5 Implementation/ResultsWe have implemented our design on a Xilinx University Program (XUP)Virtex-II Pro development system that has a XC2VP30 FPGA. This se
tionwill present the implementation of the system, and provide statisti
al testsfor showing that the results are random.5.1 RTL DiagramsThis se
tion 
ontains s
reenshots from the Xilinx ISE tool des
ribing thevarious parts of the design. The 
on�guration of the swit
h 
hain is shownon Figure 6. The two initial �ip-�ops are used for sending the pulses, andea
h Look-Up Table (LUT) implements half of the swit
h blo
k. The outputsof ea
h blo
k is sent to the next level.The arbiter 
an be observed on Figure 7. The entire swit
h 
hain ismodeled using a single blo
k on the left of the pi
ture, and its two outputs,
Qa and Qb are 
onne
ted to the �ip-�op.

20



5.1 RTL Diagrams 5 IMPLEMENTATION/RESULTS

Figure 7: End of swit
h 
hain and arbiter

Figure 8: S
hemati
 of the LUT multiplexer fun
tion21



5.1 RTL Diagrams 5 IMPLEMENTATION/RESULTS

Figure 9: Truth Table for LUT swit
h fun
tion
22



5.1 RTL Diagrams 5 IMPLEMENTATION/RESULTS

Figure 10: Karnaugh Map for the LUT swit
h fun
tion
23



5.2 FPGA Editor Views 5 IMPLEMENTATION/RESULTS5.2 FPGA Editor ViewsThe s
reenshots in this se
tion help to explain the stru
ture of the 
ir
uit aspla
ed by the Xilinx tool. They have been obtained from the FPGA editorappli
ation that is a standard 
omponent of the toolkit.Figure 11 shows the pla
ement of the swit
h blo
ks in the FPGA CLBs.The CLBs 
ontaining the blo
ks are highlighted in red. It 
an be seen thatthey are pla
ed verti
ally. An overall view of the zoomed out FPGA is shownon Figure 12. The 
hain o

upies the 
enter of the 
hip, and almost 
overs itsentire length. Other 
ir
uitry, su
h as that of the state ma
hine is interspreadbetween the blo
ks.The FPGA editor also allows us to zoom into the sli
e to show the routingof the signals inside the 
hip. Figure 13 shows how this routing is performedfor a swit
hing blo
k 
ontaining two multiplexers. It 
an be seen that bothof the Look-Up Tables (LUTs) are used for the swit
hing fun
tion, but the�ip-�ops are bypassed. The output signals are then routed to the next blo
k.The same 
lose-up pi
ture is shown for the arbiter on Figure 14. The twoinputs are dire
tly 
onne
ted to one of the �ip-�ops found in the sli
e, sothey 
an be sampled at their output.Figures 8 to 10 show the 
ontent of the LUTs using various methods.
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5.2 FPGA Editor Views 5 IMPLEMENTATION/RESULTS

Figure 11: View of the swit
h 
hain (blo
k in red)
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5.2 FPGA Editor Views 5 IMPLEMENTATION/RESULTS

Figure 12: Overall FPGA 
hip
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Figure 13: Content of sli
e 
ontaining swit
hing blo
k
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Figure 14: Content of sli
e 
ontaining arbiter
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5.3 NIST Test Results 5 IMPLEMENTATION/RESULTS5.3 NIST Test ResultsThe output of the NIST test suite for our �nal design is shown on �gure 15.The output shows that the random number generator passed almost all thetests. The failed tests are marked with an asterix. On this test run, onlyfour of the tests failed to prove the null hypothesis.Another output �le of the test is shown on �gure 16. This �le shows thefrequen
y of ones and zeros in the output, for ea
h of the bitstreams. It
an be seen that there almost as many ones as zeros, whi
h is an additionalsanity 
he
k to show that the system behaves as expe
ted.
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5.3 NIST Test Results 5 IMPLEMENTATION/RESULTS
---------------------------------------P-VALUE PROPORTION STATISTICAL TEST---------------------------------------0.637119 1.0000 frequen
y0.213309 1.0000 blo
k-frequen
y0.964295 1.0000 
umulative-sums0.834308 1.0000 
umulative-sums0.090936 1.0000 runs0.000000 * 1.0000 longest-run0.162606 1.0000 rank0.162606 1.0000 fft0.035174 0.9750 nonperiodi
-templates0.213309 0.9750 overlapping-templates0.000000 * 1.0000 universal0.122325 0.9750 apen0.585209 0.9750 serial0.788728 0.9750 serial0.000000 * 1.0000 lempel-ziv0.739918 0.9250 * linear-
omplexity- - - - - - - - - - - - - - -- - - - - - - - - - - - -The minimum pass rate for ea
h statisti
al test withthe ex
eption of the random ex
ursion (variant) testis approximately = 0.942804 for a sample size = 40binary sequen
es.Figure 15: Output of the NIST test suite
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5.3 NIST Test Results 5 IMPLEMENTATION/RESULTS

______________________________________________FILE = run1_80_xor_by_8_40bs.dat ALPHA = 0.0100______________________________________________BITSREAD = 20000 0s = 10073 1s = 9927BITSREAD = 20000 0s = 9852 1s = 10148BITSREAD = 20000 0s = 10001 1s = 9999BITSREAD = 20000 0s = 10013 1s = 9987BITSREAD = 20000 0s = 10132 1s = 9868BITSREAD = 20000 0s = 10032 1s = 9968BITSREAD = 20000 0s = 10064 1s = 9936BITSREAD = 20000 0s = 9968 1s = 10032BITSREAD = 20000 0s = 9889 1s = 10111BITSREAD = 20000 0s = 9968 1s = 10032BITSREAD = 20000 0s = 9878 1s = 10122BITSREAD = 20000 0s = 10092 1s = 9908BITSREAD = 20000 0s = 9875 1s = 10125Figure 16: Bias output of the NIST test suite
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6 FUTURE WORK6 Future WorkA suggested future work would be to test the design at di�erent temperaturelevels to see how the 
ir
uit is a�e
ted. Normally variations in temperatureshould not a�e
t the behavior of the 
ir
uit, sin
e both paths are 
hangingat the same time. However the randomness of the system may depend onthe ambeint temperature.The usefulness of the system 
an also be tested by using the 
ir
uit aspart of a larger s
heme, su
h as a 
ryptographi
 proto
ol. The bitstream 
anbe interfa
ed by a larger state ma
hine that 
an use the bits as part of aproto
ol.
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7 CONCLUSION7 Con
lusionWe have shown that the Physi
ally Un
lonable Fun
tion made from swit
h-
hains 
an alternatively be used as a hardware random number generator.Using the metastability in the arbiter, we built a prototype that is suitable formany appli
ations, espe
ially that of 
ryptographi
 authenti
ation proto
ols.We have tested the output of the randomness, and have 
on
luded that formost pra
ti
al appli
ations the system behaves unpredi
tably.
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A STATE MACHINE TRANSITION DIAGRAMA State Ma
hine Transition Diagram
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