MOBILE SHOPPING ASSISTANT

A MAJOR QUALIFYING PROJECT
Submitted to the Faculty
of the
WORCESTER POLYTECHNIC INSTITUTE
In partial fulfillment of the requirements for the
Degree of Bachelor of Science in

Computer Science

by

Berk Birand

Date: March 18, 2008

APPROVED:

Professor Emmanuel O. Agu, Project Advisor

Professor Murali Mani, Project Co-Advisor

Abstract

Due to information overload, many people currently struggle with
coordinating and managing their basic chores. By using wireless lo-
calization, we have designed and developed the “Personal Assistant,”
a location-based program that facilitates grocery shopping. The “Per-
sonal Assistant” helps the user find the best deals in grocery items,
and filters the information based on the stores’ locations. It is a proof-
of-concept application that utilizes several cutting-edge technologies

to investigate how they can be used together.

Acknowledgments

Although it has one author, this project is not the result of individual effort,
but rather the product of concerted teamwork. Without the help of my
advisors Prof. Emmanuel Agu and Prof. Murali Mani, this project could
not have matured passed its infancy. Both were profoundly involved at every
stage of the development, from inception to fruition.

I would like to thank my parents, Serda and Refik, for their endless trust
and for awarding me with an excellent education, and my brother, Burak,

for continuing the engineering practice in the family.

CONTENTS

Contents

1 Introduction

1.1
1.2
1.3
1.4

2.1

2.2

2.3

2.4

2.5

Information overload in the 21st century
Proposed solution Lo
Scenarios . . . oL ...

Project Goals

Literature Review

Wireless Localization
2.1.1 History.
2.1.2 Basic mechanism
2.1.3 Comparison of Wi-Fito GPS
214 Conclusion. L oo
Localization libraries
2.2.1 Skyhook Wireless
222 Placellab. o
2.2.3 Other Libraries
Survey of Location-based Services
2.3.1 Socialiight o oo
2.3.2 loopt.com
2.3.3 Active Campus
2.3.4 meetro.como
2.3.5 Student Projects for PlaceLab
Web Services
2.4.1 Introduction L.
2.4.2 Service-oriented Architecture (SOA)
2.4.3 Representational State Transfer (REST) architecture

Java Programming Language and supporting libraries
2.5.1 Java Runtime Machine

2.5.2 SWT/JFace GUI library

CONTENTS

2.5.3 WSDL2Java converter and Ant task
2.5.4 MySQL Connector-J
2.6 Development Environment
2.7 Apache Tomcat and Axis2
2.8 [Item Pricing serviceso L.
2.9 Perl Scraping Lo
2.10 MySQL database
3 System Design
3.1 Design Goals
3.1.1 Use of localization
3.1.2 Limitations of mobile platforms
3.1.3 Provide a unique service
3.2 Brainstorming forideas
3.3 Projectsetup L
3.3.1 General design points
3.3.2 Model Classes
3.3.3 View Classes
3.3.4 Controller Classes
3.3.5 Block Diagram
4 Implementation
4.1 Graphical User Interface
4.1.1 Tabbed client GUT
4.1.2 Mapping Facilities
4.2 Traveling Salesman problem
4.3 Server-side: Web services
4.3.1 Price-providing web service
4.3.2 Custom web service
4.4 Server-side: Database only back-end

26
27
28
30
31
33
35

36
36
36
36
38
38
38
39
40
42
43
45

46
46

CONTENTS

5 Evaluation/Testing
5.1 Technical testing L.
5.1.1 Platform dependent specifications
5.1.2 Algorithm implementation testing
5.2 Usability testing oo

6 Future Work
6.1 Improvements to the current system

6.2 Follow-upideas,
7 Conclusion
A PlaceLab Installation under Eclipse
B Running Personal Assistant under Eclipse

C Brainstorming mind map

58
o8
58
58
60

62
62
63

64

67

72

75

1 INTRODUCTION 7

1 Introduction

1.1 Information overload in the 21st century

In today’s fast paced world, it is becoming increasingly hard to keep track
of the simplest chores. As people are more and more involved in their work-
related activities, many people do not have any time for the simpler tasks.
Many employees find themselves working overtime and answering hundreds
of e-mails a day, at the cost of regularly visiting their drive-through fast-food
place.

In order to deal with this overload of information, we should use the
very same processing power that made our lives harder in the first place:
computers. By delegating some of the tasks that used to be our brain’s
responsibility to the computer, we can use our minds to do more productive
endeavors.

This project attempts to do just that, by delegating the chores related
to grocery shopping. Although seemingly trivial, shopping for groceries is
becoming increasingly complex on very different levels. One needs to keep
track of the items to be purchased, where they can be bought for the best
prices. Since the large supermarkets are more concerned about overall profits
than item-based profit, some items can be sold at significantly discounted
prices. Continually watching for these deals is a very time-consuming task,

but it can potentially save a considerable amount of money.

1.2 Proposed solution

The solution that we are proposing is that of having a personal assistant
program running on a portable device that will handle some of these basic,
shopping-related chores. This version of this software will more specifically
deal with shopping for groceries, and finding the best deals for them.

The user is only asked to input his grocery list. The software then takes

1 INTRODUCTION 8

care of finding the items at discount prices at the closest stores available.
This will delegate yet another task that our brains currently perform to the
computers. The user will not have to worry about where to buy the items,

and can instead use his mental powers for more creative purposes.

1.3 Scenarios

Scenario 1 Peter is away from home for a business meeting. On his way to
the meeting, he receives an e-mail notifying him that the meeting has
been postponed by an hour. Being in a foreign location, Peter wants to
buy some grocery items that he needs. He takes out his PDA, and runs
the Personal Assistant program. This in turn looks up for all discount
stores and supermarkets in the area, and guides him to the closest one
that carries the items that he is looking for. Not only does he buy all
the items that he needs, but he also manages to find the stores in a

foreign location.

Scenario 2 When looking at a grocery store’s discount specials page, Mary
notices that the flank steak that she buys regularly is available at half
the price for only a week. Mary decide to become a smarter shopper
and track down deals like these at local stores. Yet she quickly realizes
that it is virtually impossible to keep track of all the discounts in the
area, as there are tens of stores, and the deals usually expire within
a week. She installs the Personal Assistant program and inputs the
items that she buys on a regular basis. When she has time to shop for
groceries, she simply uses her PDA to find the best deals without doing

any preliminary research.

1.4 Project Goals

While computing has become ubiquitous, the processing power of comput-

ers have been used for various purposes. In a typical college curriculum, a

1 INTRODUCTION 9

student takes a multitude of classes in different fields including algorithms,
computer networks, databases and human-computer interaction. Although
all of these areas seem independent in their own rights, their usefulness is
apparent only when they are used together to form an application that ac-
complishes more than the sum of its parts. There is no point in studying
databases and SQL if the data will not be utilized. The study of algorithms
is a very exciting field, but implementing them just as an exercise is a su-
perficial approach. Their advantage becomes more apparent when used for
solving a real world problem. With the computing ecosystem so diversified,
the question remains as to how well these technologies work together. How
do they help the cause of computing by improving society as a whole?

The goal of this project is to investigate how each of these modern tech-
nologies work together, while creating the personal shopping assistant. We
will create a proof-of-concept application that uses as many different tech-
nologies, while delivering a service to the regular user. This service would be
very hard, if not impossible, to procure by only utilizing one system. The
service that was picked was that of helping the user with part of the daily
chores, notably that of grocery shopping.

2 LITERATURE REVIEW 10

2 lLiterature Review

Since one of the purposes of the project is to merge a lot of smaller subsystems
into a larger system, it makes sense to first look into each of these systems
in their own rights. This section introduces the many buildings blocks used

by this system.

2.1 Wireless Localization

Although wireless localizations technologies are a recent invention, they are
quickly finding their way into many mainstream devices. Most recently, the

iPhone has added wireless localization to its services'.

2.1.1 History

Localizing the position one the globe has always been a fascination of hu-
mans. Throughout history, various techniques were devised to find out where
exactly we are located. Some use mechanical devices to measure the angles

between the stars and the sun (figure 1) , while others relied on measuring

Figure 1: Sextant used for measuring the latitude

"http://www.wi-fiplanet.com/news/article.php/3723366

2 LITERATURE REVIEW 11

the time of the travel, and estimating the distance traveled from a known
location. These two methodologies (absolute positioning on the globe, and
positioning relative to a known location) are still the main ones used for de-
termining location, and can be roughly characterized as absolute and relative
positioning.

The major breakthrough in terms of absolute positioning was made in
the 1960s with the advent of the GPS system. Once the first few satellite
launches were successful, it became clear that one could use a series of satel-
lites orbiting around the globe to position oneself. Like the sextants of the
old days, modern GPS devices make measurements from several satellites to
pinpoint a person’s location on the globe. The same time-signal is received
from several different sources at once. By measuring the arrival time of each
signals, the receiver can calculate its relative position to each satellites. Since
the satellites’ locations are known, very accurate results can be obtained that
are within meters of the actual location.

Relative positioning mechanisms resurfaced through the use of wireless
localization. With the advent of cheap wireless access points, many home
networks moved on to a wireless infrastructure. This trend filled the major
cities with thousands of access points. These access points are mostly secured
using encryption mechanisms, and cannot be used by strangers to connect
to the Internet. However, they perform the job of marking locations very

convenient

2.1.2 Basic mechanism

Wireless localization works by mapping the access points (which have unique
identifiers in them, their MAC addresses) to a location. The mechanism
works in two phases. First, the mappings should be created, and secondly,
they should be looked up.

The first phase of using localization is made possible by performing a

variant of war-driving. In war-driving, people drive around the city while

2 LITERATURE REVIEW 12

scanning for wireless networks. The aim is to locate access points that are
not protected with any encryption scheme, and can therefore be exploited for
obtaining free access to the Internet. For localization purposes, the aim is not
to hunt for non-encrypted network, but rather to find out their coordinates.
The scanning is done by computers that have both wireless cards, and GPS
devices mounted on them. When a new access point is encountered, the
wireless card reads its signal strength and other characteristic values (such
as its Service set identifier (SSID) and its MAC address). The GPS receiver
is used to obtain the absolute coordinates. Together these two sets of data
are stored in a database for later use.

The second phase of localization is used when a user wishes to find out
her location. No GPS device is needed for this phase, as all the information
that is needed is already present in the database. Just as before, the wireless
card scans for the networks in the area. The combination of access points
received by the user as well as their signal strengths are used to search the
database for the closest match and hence determine the user’s location.

However the algorithm is not as trivial as it sounds. Signal strengths can
be affected by many other factors. For instance, WiFi signals can usually
bounce from walls when indoors, making such calculations harder. Other
factors such as the weather, or the presence of other devices working in the
same frequency range (such as microwaves) can also affect the quality of the
signal. Triangulation algorithms need to take these factors into account when

estimating the location.

2.1.3 Comparison of Wi-Fi to GPS

Wireless localization methods are usually compared with GPS because they
perform roughly the same task. However, this is not a rightful comparison:
the two technologies are not mutually exclusive but they complement each
other. They each have their own strengths and weaknesses.

The major problem with GPS that motivated the research in other areas

2 LITERATURE REVIEW 13

is its poor indoor coverage. GPS relies on signals received from satellites,
which allows it to perform very well when there is a direct line-of-sight to the
satellites. This feature makes GPS an excellent choice when used outdoors,
and explains why it it has found such acceptance in airplanes and hikers
alike. But the reliance on satellites is also the Achilles’ heel of the system
when being used indoors. The signal strength is very weak, if not absent
indoors. Most recent buildings have a steel construction, which makes them
act as Faraday’s cage, blocking all the electro-magnetic signals.

Wireless localization excels within buildings. The access points are usu-
ally placed such that they will have a wide reception, increasing the range of
the network connection. The improved range also means improved estimates
when it comes to measuring the location.

Another area where the two technologies differ is in relation to their
antennas. Most recent devices rely on wireless networks to get online, and
therefore have built-in wireless antennas. GPS is often seen as an accessory
instead of a necessity; it requires additional hardware, an extra cost that
makes the product more expensive without adding much to it. After all, one
usually knows where one is, and does not need the device to tell them that.

Last but not least, it is worth mentioning that the coverage of wireless
networks is restricted to major cities. In the more rural areas, wireless net-

works are not available, and therefore GPS remains the only option.

2.1.4 Conclusion

Wireless localization is a very exciting technology that promises to comple-
ment GPS. It uses the widely available network of access points to pinpoint

one’s location on the globe quite accurately, especially indoors.

2 LITERATURE REVIEW 14

2.2 Localization libraries

As explained in section 2.1, wireless localization is a very promising technol-
ogy. Although it is still considered a new technology, there already are a lot
of companies and research institutes working on localization using wireless
networks. This section lists some of the available libraries that determine
coordinate estimates of locations in order to pick one that will be used for

this project.

2.2.1 Skyhook Wireless

SkyHook Wireless is a company that develops wireless localization software.
They have built their own access point location databases for looking up co-
ordinate information. The majority of the employees at Skyhook are drivers
that have cars equipped with special computers. These computers have wire-
less cards, as well as GPS receivers, and they are used for coming up with
the necessary mappings. They boast of covering 70% of the United States’
population, sub-second time-to-fix, 99% indoor availability and 10-20m ac-
curacy.

The dynamic coverage map found on their web site seems to cover the
entirety of Worcester and the greater Boston area. Although Skyhook is
mainly focused on WiFi, they also have a technology called the “Hybrid
Positioning System” that can combine other location sensing systems, such
as GPS, TP location, Cell towers and WiMax to provide better estimates.

They provide a Software Development Kit (SDK) free for development
purposes (but charges when product launches commercially). The SDK can
be used for academic research as well.

SkyHook also publishes a specific online API called loki.com for build-
ing location-sensitive web pages. The user installs a browser plug-in that
performs the database lookup to determine the user’s location. The location
information can then be sent to web pages supporting this technology. Those

sites can then know the user’s location and modify their content appropri-

2 LITERATURE REVIEW 15

ately.

Testing For experimenting with the system, we decided to run the sample
application that comes bundled with SkyHook’s SDK. However, we could
not get that application to begin with. The compilation failed at the linking
stage, and was related to a version mismatch with the lzbcurl library that
was available on our Linux system. Since it is a proprietary system, we
were unable to find the error by looking at the source code. Our attempts at
finding help on their support groups were unsuccessful. We posted a message,
but the help that we got was not very helpful. The follow-up messages that
we sent remained unanswered.

SkyHook was never a preference for this project anyway, because it is not
open-source and it is written in C++. Although a very important language
historically, C++ does not facilitate quick development cycles. Debugging is
not very easy, and manual memory management makes tracking errors very
hard.

2.2.2 PlaceLab

PlaceLab is an open source library for creating location-sensitive applications.
It is developed mainly by researchers at the University of Washington and the
Intel Research lab at Seattle. It essentially performs the same job as Skyhook,
but uses a public database instead of holding its own. While Skyhook is
mainly oriented for WLAN localization, PlaceLab supports a variety of other
mechanisms (such as GPS and Bluetooth).

The access point database they use is called wiggle.net, and is also a public
web site. Anybody having the required hardware can post their access point
information to the web site.

PlaceL.ab is therefore a very good low-cost alternative to Skyhook. It has
some shortcomings too. For instance, there is virtually no support present,

as the mailing lists are pretty much unused. The documentation is very

2 LITERATURE REVIEW 16

minimal, and the most in-depth questions are left unanswered. On the plus
side, being an open-source software written in Java, some questions can be
resolved by browsing the source code itself (which is not that well documented
either).

There is a hardware compatibility list on their website, and apparently
it does not work with all kinds of hardware. There are also several sample
applications that have been created as part of a group project for a graduate

level Computer Science class at the University of Washington.

Testing Installing Placel.ab and running the sample applications weren’t
trivial. The details of these are explained in appendix A. It is worth men-
tioning that the documentation that came with Placelab is rudimentary at
best, and fails to explain more fine-tuned configuration options. We had to
delve into the source-code for troubleshooting a lot of the problems we ran
into.

Placel.ab downloads a list of the beacons in a given state from wiggle.net
and saves it in a local cache. Most of the access points (APs) around the WPI
campus were within the coverage range of the set of beacons. Yet the APs
inside the buildings cannot be discovered. The absence of the WPI access
points may be due to security concerns on the part of WPI’s Network Opera-
tions. Without any reference APs, we cannot get coordinate estimates inside
buildings. We therefore needed some sort of an estimate for demonstration

purposes, and we came up with two options for doing this :

1. add the access point inside the building to the main Wiggle.net database
by filling out the data entry form,

2. find a way to “reverse engineer” the local cache, and insert the access

point information only in the local cache.

For security purposes, we did not want to expose the WPI access points to

the public, so we decided to use the second option, namely adding the ac-

2 LITERATURE REVIEW 17

cess points and their locations to the local cache. We found that the cache
was stored in a local database system called HSQLDB. This database sys-
tem is used offline from a desktop application, and can be queried through
the standard JDBC interface. The queries can be performed using SQL,
which allows for executing complex queries efficiently. We managed to find
a program that will allow us to run SQL queries on the local database where
HSQLDB stores its information. After discovering the structure of the ta-
bles, we added the appropriate records in the database, which then managed
to display the estimates even inside the building where we were doing the

demonstration.

2.2.3 Other Libraries

There are a few other libraries that perform similar jobs, although they are

not very relevant for use in a project like this one.

Ekahau Ekahau is a product by a Finnish company that is built to locate
commercial data such as products, carriers and drivers inside a city.
They do not have a SDK that can be used for prototyping, and seem

like an industrial solution. As such, it is not very useful to our project

Microsoft RADAR and CHOICE Microsoft developed a system that also
uses WiF'i localization. However, their system works slightly differently.
Instead of relying on a database, RADAR is calibrated by taking pre-
cise measurements inside the building. These measurements allow the
system to work more accurately, but adds an extra level of overhead.
Moreover, the calibration needs to be repeated if the setup indoors
should change marginally (i.e., when moving a closet in an office). Due
to this extra layer of complexity and the extensive calibration required,
these systems are only meant to be used indoors. They are therefore

not very practical for this project.

2 LITERATURE REVIEW 18

2.3 Survey of Location-based Services

Most web sites and programs currently operate with a limited amount of
information about the user. They can tell time, and signal when a certain
event is scheduled. Although these services have been very useful until now,
most people have increased their mobility. Mobile computers are all around
us, disguised as cell-phones, PDAs or even watches. In order to be truly
useful, another attribute needs to be added: the location.

Location-based services can loosely defined as programs or web sites that
takes into account the location of the person using the computer. As covered
in section 2.1, various technologies can be used to obtain the coordinates of
the user. The program that we are building within the scope of this project
will also be such a service. Before starting the design of the program, it
makes sense to research the location-based services that are already in place.

Although location-based services are just starting to make an appearance,
there already are major products that attempt to use location information
to provide services to the user. These products vary in their interface: some
are developed for cell-phone usage, while others are meant to be run from
within the browser. This section will take a look at some of these services

that are available today.

2.3.1 SocialLight

Socialiight is a very promising startup that allows users to perform the most
fundamental activities. It lets one assign notes to locations that other users
can look at. This is somewhat similar to posting virtual Post-It notes on a
map.

Through these messages, information can be readily shared between peo-
ple. When walking or driving through a neighborhood, the software that
runs on your mobile phone can let you know about the posted notes for that
area. It can filter the notes based on the types you want to see, and can show

localized advertisements.

2 LITERATURE REVIEW 19

The system relies on loki for its location sensing, which is provided by
Skyhook wireless (see subsection 2.2.1). The system is currently a proto-
type, but it is expected to be available on both cell-phones and computers.
When run through a phone, it uses the GPS receiver that is built-in the
phone. Wireless localization is employed when the page is accessed through
a computer.

Another interesting feature is that it is compatible with most social net-
working sites (facebook, myspace and various blogging systems). It therefore

makes the job of integrating location data into current applications very easy.

2.3.2 loopt.com

Drag the map & click the dots-

Figure 2: Screenshot from loopt

Loopt is a social networking site that is enhanced by location-sensing.
Similar to most social networking sites, it maintains a list of your friends.
The user has the option of being alerted when a friend comes nearby. Another
feature is the ability to meet others in the area that match certain criteria.

[t is currently supported by certain carriers (including Sprint and Nextel),
and needs operator support to work and is available with a monthly fee. Since
it uses the built-in GPS module in the phone instead of Wi-Fi networks, it
needs to be supported by the phone.

2 LITERATURE REVIEW 20

2.3.3 Active Campus

The Active Campus is a system that uses the wireless networks that are
widely available on college campuses to provide location-based services. The
purpose of the project is both to develop these systems, and also to under-
stand how such systems are used in real world educational scenarios, mostly
to enhance student learning.

It’s main feature is called ActiveCampus Explorer, and it uses a person’s
location to engage them in campus life. Although this is a very interesting

project, it is not being maintained, and has not been updated in four years.

2.3.4 meetro.com

Meetro is a location-aware IM client. It lets one meet people that are in their
vicinity neighborhood through instant messaging. It is compatible with most
currently used IM systems (AIM, MSN etc..). However, one big disadvantage
of Meetro is that it relies on the user inputting their own location manually.
As such, it does not quite qualify as a location-based service as we have

defined it, but it still demonstrates how these services can be useful.

2.3.5 Student Projects for PlaceLab

PlaceLab is a localization library that we have introduced in subsection 2.2.2.
It was also used as a framework for a graduate class entitled “Location-aware
computing” at the University of Washington.

These projects are very interesting application of the system. Some no-
table ones include the “Location-aware To-Do application” and the “Place
Extractor: Translating coordinates into places.” This latter project is inter-
esting in that in transforms absolute, numerical coordinates on the globe to

more “human” locations, such as “the library” or “the dining hall.”

2 LITERATURE REVIEW 21

2.4 Web Services

One of the goals of this project is to explore the new technologies available.
In the Web arena, one of the most important emerging technologies in the
last few years was that of Web Services. They were therefore examined for
the sake of the project. This section presents an overview of existing web
services technologies in a theoretical way. A more hands-on approach will be

covered in the implementation section 4.3.

2.4.1 Introduction

As described by the W3C, a web service is “a software system designed to
support interoperable Machine to Machine interaction over a network.” In
more technical terms, it is a way of implementing code reuse over a network,
through HTTP protocol.

When the computer systems emerged, it was instantly noticed that most
of the code required for a program to run needed to be duplicated. Such com-
mon code was then placed in libraries, compiled files that could be shared
between computers. When a program was invoked, part of the code could be
fetched from the external file and executed. The advent of libraries improved
software development on several fronts. Code that was used by several pro-
grams could be placed in a single library, allowing it to take less space and
to make the job of updating it easier. It also made it possible for companies
to market libraries. A company could write a code that performed a specific
job efficiently (such as matrix operations, or GUI code), and other projects
could license this library for use in their own machines.

Web services essentially transpose the same ideas found in libraries to a
network (most often the Internet). When an application needs some data to
be fetched or processed, it can send a request to a web service through the
familiar HTTP protocol. The message that is sent contains the name of the
service that is requested (similar to the function name in a regular function

call), along with data that is needed for the function (similar to function

2 LITERATURE REVIEW 22

arguments). The server processes the given data appropriately and returns
another message that contains the resulting data (similar to the returned
value).

The intention of Web Services was to revolutionize Business-to-Business
(B2B) communications. Currently the Internet can be seen as a collection of
individual web sites offering their own services. The communication between
them is almost non-existent, except for some of them like PayPal offering the
possibility to make payments. The next step in the evolution of the Internet
was seen to be more interoperable services. Web sites would be able to offer
the information they possessed to others, making the information even more
valuable.

There are currently two architecture that specifies how Web Services can
be used. They differ in how the messages that go back and forth are com-
posed. The Service-Oriented Architecture has a more rigorous definition of
the interface, and the resulting types, whereas the REST architecture is more
loosely defined. They both rely on XML to send and receive the data.

2.4.2 Service-oriented Architecture (SOA)

SOA Web Services have a very strict way of representing the messages that
the server can received. This interface is published by the web service through
a Web Service Description Language (WSDL) file. The file contains the name
of the services that are offered, and what arguments each accepts and returns.
The client uses this information to generate a message that conforms to the
specifications. The message is sent to the server in a special XML format,
called SOAP. Although SOAP originally stood for “Simple Object Access
Protocol,” the acronym was dropped for being misleading. The server re-
ceives the SOAP message, parses it appropriately and returns another SOAP
message containing the result of the operation.

Another interesting feature of SOA web services is that they are “discover-

able.” The Universal Description, Discovery and Integration (UDDI) servers

2 LITERATURE REVIEW 23

act as a yellow-page of available services. This allows client to look up a
certain kind of services or company that does the function that is needed.
By downloading the WSDL file, the client can incorporate that service into
its own framework.

The main criticism for SOA web service is that they are too complicated.
There are tens of different standards that dictate how certain messages should
be shaped, and how the protocol should work (e.g., for authentication). A

typical web service book can easily contain thousands of pages.

2.4.3 Representational State Transfer (REST) architecture

Compared to SOA services, REST services are very easy to describe. They
work along the same model, where the client and the server communicate
by sending XML files through HTTP. The structure of the XML file can be
arbitrary, and should be documented by the service provider. The client just
needs to look at a sample file, and generate a similar one that will be sent
to the server. The response will then be parsed by any of the XML parsers
available, and the data can thus be used.

It is worth re-iterating that the reason why REST web services are seen
as most successful is because of their ease of use. Although they are not as
complete for more advanced jobs, they make the task of writing rudimen-
tary services very easy. Most people foresee that REST services will almost

surpass the SOA services in terms of acceptance?.

2.5 Java Programming Language and supporting libraries

The language that is used for developing this application is Java. The choice

for using Java was straightforward. For one, PlacelLab is written in it. It

2¢“Amazon has both SOAP and REST interfaces to their web services, and 85% of their
usage is of the REST interface. Despite all of the corporate hype over the SOAP stack,
this is pretty compelling evidence that developers like the simpler REST approach.” Tim
O’Reilly. http://www.oreillynet.com/pub/wlg/3005

2 LITERATURE REVIEW 24

is much easier to interface with Placelab if development is in the same lan-
guage. We can then import the libraries into the project within Eclipse, and
directly use the functions.

The second reason Java is a convenient choice for this project is because
it has proven itself as a language suitable for large project development. By
forcing the use of classes, it promotes good abstraction practices. It also runs
on a virtual machine, it handles garbage collection, freeing the developer from

the big burden of manual memory management.

2.5.1 Java Runtime Machine

For development purposes, I am using the latest Java Runtime Environment
(JRE). At the time of this writing, that would be Java SE 6 (1.6.0_05). This
Java version supports a lot of new innovative features. Some of them are as

follows:

e pluggable annotations
e generics (Prototypes for data structures)
e Improved Web Services support (JAX-WS)

e Improved Java Binding of Objects to XML (JAXB) used in Web Ser-

vices
e Scripting Language Support
e JDBC 4.0 support
e Java DB built-in Apache Derby database management system

e Dramatic performance improvements

Although not all of the features available in this version will be used, these

are all big selling points of the new Java release. With the goal of exploring

2 LITERATURE REVIEW 25

new technologies in mind, I am considering experimenting with them simply
to see if they are really as worthy as they are promoted.

Some of the novelties will be used extensively. These include the Java
DB built-in database, libraries for using Web Services (such as JAX-WS
and JAXB) and the latest JDBC 4.0 for interfacing with several database

mechanisms.

2.5.2 SWT/JFace GUI library

The main part of this project will be a Graphical User Interface (GUI), with
a very detailed set of specifications. The user interface needs to be intuitive,
since it is going to be used on portable devices, such as cell-phones, smart-
phones and PDAs. The biggest limitation to usability in this case is the size
of the screen, which does not typically exceed 4” diagonally. Screen space
being a scarcity, the GUI toolkit that I use needs to have a big library of
widgets, and also allows the user to defines his own. Instead of using simple,
HTML-style items such as text boxes and buttons, advanced controls like
trees, lists and even browser controls are required.

A choice needed to be made between the three graphical toolkits available

for developing Java applications. These are as follows:

AWT This is the first graphical library that was released in 1995. It was
mainly designed to use the native toolkit of the Operating System, and
therefore was fast, but not very portable. The look of the application
was not the same between different platforms. Moreover, only a very
small subset of widgets that are available in all the different platforms
are supported (the “least common multiple” of widgets). The objects
are therefore very elementary, and not very customizable. Currently,
AWT is considered a legacy technology, and it is not widely used in

modern applications, except perhaps in Applets.

Swing Designed to address AWT’s difficulties, Swing is completely platform-

2 LITERATURE REVIEW 26

independent. This convenience comes at the expense of speed; all the
widgets are drawn programmatically in Java, and do not rely on the
OS at all. It is supported in the JRE, and does not require any external
libraries. There are several large-scale projects, such as the well-known

Bittorrent client Azureus, that use Swing as their graphical toolkit.

SWT /JFace Developed for the Eclipse IDE project (see 2.6), SWT at-
tempts to complement AWT and Swing, by locating itself in the middle
of the “Speed vs Look” debate. In SWT, the widgets that are provided
by the OS are implemented as such, and those that are not available are
drawn manually. This guarantees a very consistent appearance, and it
also maximizes speed. The JFace framework allows the application of
the Model-View-Controller pattern for SWT. It makes it possible to
bind data structures to widgets, and takes care of updating the widget

when the Model changes.

Considering all of the options, T decided to use SWT /JFace for this applica-
tion. It has a very rich set of widgets, and it is proven to be usable in very
large projects such as Eclipse. The JFace addition is also very convenient.
Although it takes some time to learn about all the different classes and how

to use them, once mastered the GUI “just works.”

2.5.3 WSDL2Java converter and Ant task

In the traditional Web Service development process, one first starts out by de-
scribing the interface using the Web Services Description Language (WSDL)
file (see section 2.4). This file is a specific XML Schema that contains the
name of the methods, the connection point and port of the service, and the
type of the arguments that need to be passed. In my case, the WSDL file
has been generated using the WTP toolkit of Eclipse (see section 2.6).
Once the WSDL file is in place, the WSDL2Java converter program is used

to generate stub Java classes. These classes contain all the methods that are

2 LITERATURE REVIEW 27

necessary to use Web Services in Java. The key methods that should contain
the majority of the server-side code are left empty. It is up to the user to fill
out these sections to get the server to work.

The WSDI.2Java script that T used came with the Axis2 Web Services
platform (see section 2.7). Tt can be executed from the command-line, taking
the WSDL file as its first argument, and generating the package structure as
a side-effect. There is however a better way to use this system.

The Axis2 library also comes with an ant task for automating this process.
The steps necessary to get it to work are not very evident. One first needs
to set up the build.xml properly to include the right libraries. Then the
correct hierarchy of folders need to be created such that the output classes

are considered as being with the source code.

2.5.4 MySQL Connector-J

As explained in 2.10, the MySQL database management system is used on
the server-side to store the price information. Since the Web Services plat-
form is somewhat convoluted (see 4.3), I needed a way to test the database
connection without using Web Services. I decided to connect from my client
to the server directly using a JDBC database connection. However the built-
in JDBC library does not have out-of-the-box support for connecting to
MySQL. The MySQIL Connector-J library is needed for this purpose.

When the library is included in the classpath, the necessary driver is
automatically loaded when the default JDBC method getConnection is called
with “mysql” in the connection string. From that point on, the default JDBC
methods such as createStatement and executeQQuery can be invoked to run
SQL statements.

2 LITERATURE REVIEW 28

2.6 Development Environment

Before boarding on a software engineering project such as this one, one needs
to pick his tools. The development environment is probably the most impor-
tant tool of all, since it is the programmer’s interface with the compiler (or
in the case of Java, the virtual machine).

Luckily, when it comes to Java development environments, the choice
aren’t that many, and they are all very attractive. Eclipse and NetBeans
are both very compelling products, and they are both widely adopted. Since
throughout my studies, I was mostly introduced to Eclipse, I picked it as the
IDE for this project for purely personal reasons.

The Eclipse Development environment is the preferred Interactive Devel-
opment Environment (IDE) for many Java developers. The latest version,
Eclipse 3.3 Europa, is being used for this project. This program single hand-

edly speeds up the development progress for the following reasons:

e The structure of the project is fairly complicated, with the project hav-
ing a lot of dependencies on several jar files and libraries. It also uses a
lot of different versions of tools that need to inter-operate. The project
also contains a lot of classes and packages for a modular design and
good software engineering practices. Although this ensures that the
tasks are broken into smaller chunks of code, managing all of these files
manually through compile-time options would be very unfeasible. One
needs to be sure he is in the right directory for compiling it, make sure
the classpath is set up properly, and go through the write-compile-run
cycle several times. Writing Ant files would be preferable than han-
dling the task manually, but would still be hard to maintain. Changes
would need to be made to the build.zml file with every change, and the
file would become unwieldy to manage in no time. Eclipse very con-
veniently takes care of all these development chores. The source code
is maintained in the source directory, and the libraries can be added

to the classpath using simple dialog boxes. Running the code is done

2 LITERATURE REVIEW 29

with the click of a button, and the compilation is done only if changes

were made to the files.

e Eclipse has a very comprehensive debugging support. It allows the
placement of breakpoints at problematic locations and the ability to
watch variables until they get a certain value. Once the execution is
paused, the developer has the ability to step through the code line-
by-line, selectively entering and exiting functions. At any point, the
variables in the scope can be monitored, and their values displayed.

All these features make it possible to spot errors in a very short time.

e Eclipse has many plug ins for extending the out-of-the-box features.
For instance, following well-known software engineering practices, I de-
cided to use a version control system (VCS). These systems allow the
developer to save the source files of the project in a central repository
at several points throughout the development. It can be done at regu-
lar time intervals, after a certain milestone has been reached, or before
tackling major changes. It is then possible to recover a previous state
of the code, make a different change, eventually creating a different
branch. CVS is the classical system among versioning systems, and is
supported natively by Eclipse. However Subversion is a newer system
that superseded CVS recently, and it addresses a few of its shortcom-
ings. Being fairly new, Subversion is not natively supported by Eclipse,

but can easily be added by the use of a plug in.

e Another helpful plug-in that I used was to the Web Tools Platform
(WTP). It actually is a set of plug-ins for managing web development
tasks and writing web applications. I used them when designing the
web services server. As explained in 2.5.3, one needs to design the
WSDL file. Having a graphical interface for designing XML files is a
welcomed addition. Since the XML Schema is known by the WTP plug-

in, a developer can use graphical objects for defining the web service

2 LITERATURE REVIEW 30

ports, functions, argument types and such by using boxes, arrows and
text boxes. This speeds up the process, and makes it more foolproof,
because Eclipse takes care of writing the XML file from the graphical

representation, keeping the attention-related errors at a minimum.

2.7 Apache Tomcat and Axis2

This application will use Web Services as its data providing mechanism.
In order to run a web services, one needs a server that supports the said
protocols. The Apache Foundation provides an open source solution that
comes in two parts.

Tomcat is used as the Application Server. It is entirely written in Java,
and it allows one to run Java web applications written using servlets and
jsp. It can either run independently, or it can be made to work with the
original Apache server. In the latter scenario, the static web pages and
binary files (such as images) are handled by Apache, and the Java-related
dynamic pages are delegated to Tomcat. For the purpose of this project, no
files will be published, so the main Apache web server was not needed.

To run web services, Tomcat needs to be augmented with Axis2, which
is also developed by the Apache foundation. It is developed as a servlet
application, and distributed as a file with the extension .war (which stands
for Web ARchive, the counterpart of the .jar file for web applications). In
order to deploy it, one copies the file to the webapps directory of Tomcat,
which then takes care of decompressing the content in the right folder. The
Axis2 system can then be accessed just like a web application through a web
browser.

As an added bonus, the Axis2 project also comes with a WSDL2Java con-
verter, as well as a Java2WSDL (that is not used for this particular project).
These tools can be used directly within Eclipse thanks to the custom Ant
task, also distributed with the package (see section 2.5.3).

2 LITERATURE REVIEW 31

2.8 TItem Pricing services

In order to get the price information for various products, the project needed
an online price database that also has physical store location information.
This central database is to be accessed from the Personal Assistant. A search
determined by the current location of the device will be conducted, and the
result displayed in a map.

There are many web sites that provide the user with price comparisons.
The prices are fetched from other merchants, and the result of the query is
displayed. This convenient features allows the user to get prices from several
web sites at once, making sure that the product is bought at a good price.
Examples for these sites include www.pricegrabber.com, www.mysimon.com
and www.froogle.com.

For the sake of this project, there are two additional requirements on
the pricing service. It needs to contain prices for physical stores and not just
online web sites. Shopping from web sites defeats the purpose of the Personal
Assistant. We need to display the stores that are within close driving range
from the user, so as to handle their errands. Secondly, the price information
should be made available through a web service. That way the integration
with the software would be made through the regular SOAP protocol, as
described in section 2.4.

Unfortunately, we were unable to find such a web site or service. Noting
that these two requirements were too strict, we decided to relax the second
one. After some research, it was obvious that web services did not have as
much acceptance as we were led to believe from all the hype. We decided
that we could manually parse a web page (see section 2.9) and use the output
as my own web service.

The requirement of finding a web site that lists the items in stores, along
with their locations was also hard to satisfy. There is no standard for sharing
this kind of price information. An experimental project developed at the

University of Mannheim came very close, but still could not satisfy all our

2 LITERATURE REVIEW 32

criteria.

The aim of the shopinfo.xml project is to develop a standard that will
allow the stores to provide their product information publicly, in an easily
parsable form. This is done by placing an XML file entitled shopinfo.zml
at the root of the web server so that it is accessible by going to the link
http://www.website.com/shopinfo.xml. The price comparison services
will use spiders for looking for the file, and if found will add the content to
their database. Interestingly, this standard allows for physical locations to be
specified as well. The downside is that most of the web sites that currently
support the standard do not use this feature, and rely on selling online.

In conclusion, we werew unable to find a web service that provided the
kind of information that was needed for this project. As the project could
not continue without prices, we decided to manually obtain the price and
store data by parsing the web site of grocery retailers, as explained in the

next section.

2 LITERATURE REVIEW 33

2.9 Perl Scraping

The main purpose of this project was to find a web service that provided
price information from different stores through a web service (see section
2.8). When such a service was not found, it needed to be created from
scratch, and the data for it needed to be fetched from somewhere. The best
option was then to parse several grocery stores’ web sites using an HTML
parsing script written in Perl.

Perl is a programming language widely recognized for its excellent text
processing capabilities. It has a very powerful regular expression engine, and
numerous built-in functions for separating, searching and displaying text. It
also has an online library of modules that can easily be downloaded. These
modules prevent the programmer from reinventing the wheel, and can add
substantial amount of functionality very easily to the program.

Initially, our aim was to find a Web Service that would provide grocery
price information to the public. After much exploration, we were disap-
pointed to realize that no such service existed. The only other option was to
create our own Web Service for this feature. In order to obtain the data that
was to be served, we wrote a spidering script that browses the web sites of
supermarket chains and collects the price of the items that are on sale. For
the sake of example, the scraping script has been implemented for the Price
Chopper web site. Repeating the same process for other supermarkets’ web
pages will be essentially the same job. It is therefore sufficient to do it once
as a proof-of-concept application.

The script was entirely written in Perl, which facilitates text-based pro-
cessing of pages. Moreover, the Comprehensive Perl Archive Network (CPAN)
is replete with modules that are built to automate spidering. By consulting
the excellent book “Spidering Hacks” by Kevin Hemenway, we found out that

two of those modules were especially helpful.

WWW::Mechanize This module programmatically simulates a browser.
Not only does it handle all the low-level HT'TP protocol methods, but

2 LITERATURE REVIEW 34

it also has methods for clicking on specific buttons and links, and ac-
cessing the content of the current page. More sophisticated features

include the ability to fill out form elements.

HTML::TreeBuilder Once the content is obtained through the WWW::Mechanize
module, it needs to be parsed to get the price information about the
products. This is achieved by the use of the HT'ML:: TreeBuilder mod-
ule. Its look down method is very helpful for getting all the nodes and
their inner HTML for the DIV tags that match a specific condition.

In addition to the modules used for scraping, some other modules were needed
for inserting the information in the SQL database. The de facto module is
DBI, which is similar in nature to the Java JDBC library. It has a standard
interface that is independent from the database server that is used. Actually,
the module itself is merely an interface, and the bulk of the logic is contained
in separate “driver” modules, such as DBD::mysql. In theory, one can simply
install this module using Perl’s standard CPAN module, and start using it.
However, our experience did not go so smoothly.

Our development system being a Windows XP, we installed the binary
version of MySQL. As it turns out, DBD::mysql requires MySQL to be com-
piled from source code, because it uses the C client-side libraries to perform
the logic. We therefore could not manage to install the module, without
going through all the trouble of compiling MySQL from within Cygwin.

After some research, another module came to our rescue: Net::MySQL.
In that module, all the logic is implemented directly in Perl, and therefore
does not require any extra libraries to be present. Although more limited in
its features, it still has most of the basic capabilities. That is why we ended
up using this module for inserting the data collected through spidering into
the database.

2 LITERATURE REVIEW 35

2.10 MySQL database

Databases are built for efficiently storing and retrieving large amounts of
data. Since a web service that provided store information could not be found
for this project (see section 2.8), we relied on collecting my own data through
parsing (section 2.9). The dataset that we had was quite large, and it needed
to be stored for easy access. The MySQL database was used for this purpose.

This application is very well-served as far as databases go. PlaceLab uses
a native Java database called HSQLDB to store its beacon information. The
client-side program uses the Java DB that is distributed with Java SE 6. In
addition to these two, we had to pick a database to be used on the server, that
was to store all the price and store information. This last database needed
to be accessed by the web service. A multitude of client can be querying it at
the same time, which requires it to be a very robust one. Neither of the two
database servers cited could handle this kind of load. We therefore chose to
use the database system that is the jewel of the open-source world, MySQL.

Not only has MySQL proven its value in the industry, but it also has
proven its convenience for the smaller projects. Being completely free in
every sense of the word, it is also supported on many platforms, including
Windows XP. Installing it was a breeze, and the server was up and running in
no time. After spending some time configuring the various users and granting

the proper access codes, creating the tables was completed momentarily.

3 SYSTEM DESIGN 36

3 System Design

After introducing the individual libraries and technologies that were in this
system, we can now describe the design of the application. Just as with any
other software project, it is important to establish a few design considerations
first. This section introduces the design goals of the project, goes over the

brainstorming process and introduces the class hierarchy.

3.1 Design Goals

A software engineering project starts by establishing the expectations from
the final product. Having these design goals throughout the project allows
the project to move towards the right direction when decisions need to be
made. This section introduces the major goals that should be considered

when reading through the rest of this report.

3.1.1 Use of localization

This application is a location-based service, and needs a localization library
as discussed in section 2.2. There are several trade-offs when considering the
library to use. The library must be available on a wide-range of devices so
that the development will not be repeated for every platform. The language
used for writing the entire software must be compatible with the library used
in order to avoid compatibility issues.

The usage of localization also affects the service that needs to be per-
formed. The application must do something useful with the coordinates

gotten through the localization library. Usefulness is hard do quantify

3.1.2 Limitations of mobile platforms

A location-based service is not beneficial if it is used from a fixed desktop

system. If the address is known beforehand, a geolocation service can provide

3 SYSTEM DESIGN 37

the exact coordinates of the location. Since the location is not changing, the
program wouldn’t be of much use.

The platforms where these services really shine are mobile. Their porta-
bility implies that the coordinates changes, and that these coordinates can
be used in more meaningful ways.

Designing software for mobile platforms is a challenging task because it
comes with strict constraints. One of those constraints found on all mobile
computing platforms is the shortage of screen real-estate. Most portable
devices have diminutive screens that make the devices smaller and more
energy-efficient. Yet the cost of the extra battery life is paid when dealing
with user interactions. The design of the program should take into consid-
eration the small screen and the usability of the final product must not lack
any functionality.

Yet another constraint is the programming environment. Developing pro-
grams directly on mobile devices is difficult. It is typical to conduct the
development on a regular workstation, test the code using a simulator, and
then test it on the device itself. Luckily, the Java platform is widespread for
mobile devices. The Java ME platform is deployed on all modern portable
devices, be they cell-phones, PDAs or smartphones. Java is therefore an ideal
language to work with.

In recent years, mobile devices have acquired general purpose processor
that allowed them to run any user-defined code in addition to their firmware.
A typical cell-phone processor’s speed does not exceed 200 MHz, whereas
that of a smartphone is in the 500 MHz range. Although these speeds seem
sufficient, they are not so when dealing with computationally-intensive al-
gorithms. We must keep these considerations in mind when choosing algo-

rithms.

3 SYSTEM DESIGN 38

3.1.3 Provide a unique service

Combining the processing power of portable devices with their location in-
formation opens the doors to a multitude of interesting applications. These
ideas can range from the mundane to the innovative. There also are a lot
of services currently developed that address this same challenge. For this
project, we aim to build a software system will be truly productive for its
user. This goal of the project is the only one that is not technical, and

therefore the one that is the hardest to measure.

3.2 Brainstorming for ideas

The development phase began by brainstorming possible uses for the system.
In order to satisfy the goal introduced in subsection 3.1.3, we listed all the
applications of wireless localization systems in a mind map format. The
challenge was to find an idea that showcased the power of location-based
services that was useful, and that was not already developed previously.

Mind maps were used when brainstorming for ideas. These diagrams
use various shapes and graphics to engage the right hemisphere of the brain
which is usually ascribed to creative thinking. The mind maps are usually
drawn in a tree structure, where the root of the tree is found at the center
of the page. Each main branch stemming from the center corresponds to a
major area where location-based web services could be used. By the end of
this process, we obtained the diagram shown in appendix C.

Some of the ideas discovered through the brainstorming process had al-
ready been implemented by start-up companies listed in section 2.3. Of the

remaining possibilities, a viable subject was picked.

3.3 Project setup

Once the theme of the project was discovered after the brainstorming phase,

the design process began. This section will explain how the software was

3 SYSTEM DESIGN 39

designed, and what methodologies were used for it.

3.3.1 General design points

Before delving into the details of the implementation, we will go over some
general concepts used throughout the design process.

Design patterns are reusable solutions for solving a specific problem.
While many patterns were used throughout the design, some of them need
special attention. The Model-View-Controller pattern is regarded as the ulti-
mate design method for graphical applications. It partitions the entire code
into three logical blocks, each having its own purpose. More information
about the Model-View-Controller pattern can be obtained in [GHJV93| The
MVC pattern is also the role of GUI toolkit that we used, SWT/JFace (see
subsection 2.5.2).

Partitioning the project into smaller pieces is the goal of the object-
oriented programming paradigm. Fach logical block is abstracted as an
object that can be manipulated through several methods. The application
of the MVC pattern discussed above is especially suited to being used with
the object oriented programming. Fach class will either act as a model, a
controller or a view.

Java further enforces object oriented principles by introducing the con-
cept of packages. Big projects like this one may contain hundreds of classes.
Grouping these into logical subsets makes the code more readable and struc-
tured, and provides a more precise control over the visibility of classes; ob-
jects can expose certain methods only to other objects belonging to the same
package.

All of these tools have been used to make this project as rigorous as

possible. The rest of this section will detail the packages and their contents.

3 SYSTEM DESIGN 40

3.3.2 Model Classes

The Model classes are divided into three separate packages based on their
purpose. The classes that mainly use logic written by the authors belong to
the model package, shown on figure 3. These classes deal exclusively with
the grocery information, and the various mapping functions.

A TreeNode is the main abstract class for dealing with the storage of
items in a Tree on the GUI. Since it is an abstract class, it does not directly
have any fields that lets it store any useful data. Instead, the children and
parent fields are used to capture the relationships between the levels of the
tree.

There are two subclasses of TreeNode. Groceryltem is responsible for
storing all the information pertaining to each grocery items. As it can be
observed on figure 3, it has the fields for the name, store and price of the item,
as well as the latitude and longitude of the specific store. The GroceryList
class does not contain much logic, and it is aimed to be the root of the tree
(i.e., it does not have a parent).

The GMapGenerator class writes the HTML file that contains the Google
Maps API page. It takes some coordinate values as arguments, and writes
the appropriate Javascript code to the specified file. This file can then be
displayed in the Browser element of the GUI.

The model package has a sub-package entitled datastructures. This pack-
age has three classes for modeling and solving the Traveling salesman problem
when calculating the trajectory of the visit. The Vertex class represents a
vertex in graph, and holds the coordinate information of each store. Since
in our graph, all vertices are connected to each other, there are no explicit
edges between them; all vertices are understood to have an edge with all
other ones. The Verter class also has fields that makes it suitable to be used
as a tree. By merging a vertex and a tree node, we can keep the same class
structure when transitioning from the graph to the minimum spanning tree.

The MinimumSpanningTree class takes a set of vertices, and calculates

3 SYSTEM DESIGN 41

model
TreeNode GMapGenerator
children map_filenarme
directions_filename
barent markers
a0 addMarker()

getChildrend
gethlumberQOfChildrend
getParenti)
hasChildren()
insertChildAtd
remaveChildd
replaceChildd
setChildrend

deleteMarkers()
generateDirectionsSectiond
generateMarkersSection)
updateCoordinates(
wiriteFilef)
writeDirectionsFiled

setParenti)
datastructures
Vertex . .
MinimumSpanningTree
coordinates -
Groceryitem children yeglces
in
name GroceryList parent root
store key — -
price addChildren() getMinimumapanningTreed
comment getChildrend
longitude gz%igo(;do TravelingSalesman
Iat|tude. g i final_cycle
hag_children root
gettersisetters for attributes vertices
FindCycleg
findPath
getFinalCyeled

Figure 3: Structure of the model package

the minimum spanning tree from a specific starting point (the initial location
of the user). The shortest route visiting all nodes can then be calculated from
this tree by the TravelingSalesman class.

Another package that corresponds to the model logic is the db package
(figure 4). It contains a DerbyDatabaseManager class that handles the stor-
age of the grocery list using the built-in Java DB database. It essentially
converts the GroceryList data structure discussed above to a set of SQL
statements. The nature of the SQL queries can be guessed from the name
of the methods (e.g., getStoredGroceries executes a SELECT query, while a
setStoredGroceries executes an INSERT query).

The placelab package contains a single class, PlaceLabConnector, that

acts as an interface with the underlying PlaceLab library (see figure 5). The

3 SYSTEM DESIGN 42

]

DerbyDatabaseManager

driverMame

utl

conn

createTabled
dropTable)
getStoredGraceries(
setStoredGraceries)

Figure 4: Structure of db package
placelab

PlaceLabConnector

daeman
mapper
tracker
createTracker()
getCoordinate)
nulsed
shutdown(

Figure 5: Structure of placelab package

PlaceLab installation contains tens of classes that need to be used simultane-
ously to get the current coordinate information. By hiding the calls through
a class, the main code is greatly simplified. A simple call to the getCoor-
dinate method returns an object that contains the current coordinates. It

essentially implements the Facade design pattern.

3.3.3 View Classes

The View classes that handle the GUI related functions are enclosed in the
gut package. These classes handle the user interactions and the display of
information to the user. The structure of this package is shown on figure 6.
The GUI code itself is in the JFaceGUI class. Although this class contains
two dozen methods, they are not shown on the figure for the purpose of
simplicity. They deal with the creation of the widgets (lists, buttons) and
binding them with the controller classes (see section 3.3.4).

As suggested by its name, the BackgroundThread class runs in a separate

3 SYSTEM DESIGN 43

thread on the background and handles tasks that need to be run regularly.
An example of such a task would be to query the PlaceLab library in order
to obtain the current coordinates, and update these values on the GUI.

The rest of the classes are separated into their own packages depending
on their purpose. The labelprovider package contains classes that describe
how to display the data stored in the model classes in the widgets. As
explained previously, all the information regarding the grocery items are
stored in the Groceryltem object. The label providers take these grocery
items, and extract the respective fields that will be displayed in the columns.

The GUI has one dialog box that allows the user to add and to edit
the grocery items in the list. The AddEditltemDialog includes the logic for
updating the model. The actions package is similar in nature to the dialog
class. Each of the classes in this package performs a single task. They are
called when the user clicks on a button in the toolbar, or clicks on a menu
item.

The contentprovider package can be considered to be a hybrid view and
controller logic. Each of the classes in that package are assigned to a widget.
By overloading certain methods, the user decides what data will be displayed
inside. Forinstance, the methods for accessing the web service for the grocery

information and for fetching price are found in these classes.

3.3.4 Controller Classes

The project setup does not contain any strictly controller related classes.
The job of reacting to the user input is handled exclusively by the JFace
framework. When an item on the list is expanded, JFace calls the methods
defined by the programmer to perform the correct action. The programmer

is therefore relieved of the burden of explicitly dealing with user behavior.

44

3 SYSTEM DESIGN

1PpInoid Daal]

lapioldauodisiifingo)

IBPIAOIILIBIIO B WBY

lapiaciduaiuog

1BPIN01dadLIdUIBI010

J1apwnoldapnyfuopuasoln

Ay

(palueyondu)
(asodsip
{isjuaa a0

19PIND 1IN0 PR INJINS] “d e

LR

19PIND IdIRgeTuLLINio)

19PIND1da 101582019

18P0 IdaIRNAIBI01D

18P0 Idapne 82019

uonoyAngo 1ppy

uonayuwiayalsjaq

uonyRdu

uonaywRyp3

ung

57

uonay

uonaywRYPPY

5U0JIE

Bojeiquia)yupIappy

shojelp

slamaln aae) -asdiaeBio

_Lmu_aua_mﬁm_

peaiy]punoifiyoeg

Ing=2edr

uopealelasdipaiio

Structure of gui package

Figure 6

3 SYSTEM DESIGN 45

Personal Assistant

SWT/|Face PlacelLab Java DB Web Services

Java Any Platform

Figure 7: Block Diagram of the system

3.3.5 Block Diagram

With all the classes defined, it makes sense to look at the big picture block
diagram of the overall system (figure 7). On this diagram, each block corre-
sponds to a section of the program, and is dependent on blocks at the lower
levels. At the base, of the entire system is the Java virtual machine. By
definition, the web services are platform independent, and can therefore be
implemented in any language (including Java).

At the second level, one can observe the different libraries and interfaces
that are used. The location information is provided by PlaceLab, the local
storage facilities are available through Java DB and the GUI toolkit used
is SWT/JFace. The web services framework is also at this level, and is
communicated with through the Internet. The Personal Assistant software

itself uses all of these technologies.

4 IMPLEMENTATION 46

4 Implementation

Having outlined all the different components of the system, this section will

explain how they are put together to make the Personal Assistant application.

4.1 Graphical User Interface
4.1.1 Tabbed client GUI

Using the SWT /JFace toolkits, we designed a GUIT that uses a tabbed design
allows for a more efficient use of the screen space. The tab names can be
designed using buttons so that they can be clicked with a stylus pen. The

four tabs are labeled: Map, Estimates, [tems and Stores.

Estimates The simplicity of the estimates tab (figure 8) can be misleading.
It only contains two labels, but those labels show the current location of the
user as obtained when the PlaceLab library is queried. The labels are updated

every second in order to track the movement of the user.

Items The Items list is where the grocery items are stored (figure 9). The
user adds each item that is needed to the list using the Add Item dialog
box. Price and store data can optinally be included with the item to act as
a reference. They can be used to compare the price quotes that are obtained
from the server, to see whether the deals are really worth it or not.

Once the initial list is formed by adding all the items that are needed
regularly, the Personal Assistant handles the task of finding the items in the
local stores (as explained in section 4.3). The user needs to expand the item
that will be looked up by clicking on the plus icon to the left of the item.
This initiates the lookup, and displays the result of the query as sub-elements.
Each of these items corresponds to a deal from a local store.

After browsing the list for the items that are wanted, the user selects

the ones he is interested in. By clicking the “Update To-Buy” button on the

4 IMPLEMENTATION 47

Personal Assistant

X

File Groceries Help
Add Item Edit Item Delete Ikem Update To-Buy List

1, Estimates |2. Items | 3. To-Buy | 4. Map | 5. Directions

These are the latest estimates found
Latitude: 42273022
Longitude -71.803451

Figure 8: Estimates Tab

toolbar, these items are committed to a separate To-Buy list found on the
next tab.

To-Buy List The To-Buy list allows the user to review the items that
will be purchased. Only the items that will be attended to immediately are

shown on this list, along with the location of the store (figure 10).

Map Once the To-Buy list is confirmed, the next step is to click on the Map
tab (figure 11). This tab shows the location of the stores using the Google
Maps API (see section 4.1.2). Each marker corresponds to a store that will
be visited during the routing phase. The user has the full capabilities of

Google maps: he can zoom in and out, and can even go to the satellite view

4 IMPLEMENTATION 48

X

Personal Assistant

File Groceries Help
Add Item Edit Item Delete Ikem Update To-Buy List
1. Estimates | 2. Items | 3, To-Buy | 4. Map | 5. Directions

Mamne Price Store ta

=[] Italian Bread $12.2 PriceChopper
Italian Bread 16 0z, $1.0 PriceChopper - Worcester
[]1talian Bread 16 0z, $ 1.0 PriceChopper - Marlborough
[]1talian Bread 16 0z, $ 1.0 Price"hopper - Worcester
[]1talian Bread 16 0z, $ 1.0 PriceChopper - Worcester
[]1talian Bread 16 0z, $ 1.0 PriceChopper - Putnam
[]1talian Bread 16 0z, $ 1.0 PriceiChopper - Shrewsbury

=[] Eag $12.0 PC
[l Eggland's Best Large ¥ $ 5.0 PriceChopper - Wiorcester
[]Eggland's Best Large ¥ $ 5.0 Pricei_hopper - Marlborough
Eggland's Best Large ¥ $ 5.0 PriceChopper - Worcester
[l Eggland's Best Large ¥ $ 5.0 PriceChopper - Wiorcester
[]Eggland's Best Large ¥ $ 5.0 Price_hopper - Putnam
[Eggland's Best Large ¥ $ 5.0 PriceChopper - Shrewsbury

[] Tuna $12.0 PC
[Muffins $12.0 PC
[] steak $12.0 PC
[chicken $12.0 PC
@1 gada ER LN o by

Bill Clinton's Favarite MOT!

Figure 9: Items Tab
to see real pictures of the stores taken from the satellites.

Directions The final step in the procession is routing. By clicking the
Directions tab (figure 12), the GUI starts to solve the Traveling salesman
problem (see section 4.2 for details). The result of the computation is dis-

played on another map, and the route is shown by highlighting the route.

4.1.2 Mapping Facilities

One of the most exciting innovations in the recent years was the introduction
of powerful client-side Javascript capabilities in the browsers, which opened
the door to a multitude of applications. The Google Maps API is one such

application. It allows the inclusion of dynamic maps to any web page. The

4 IMPLEMENTATION 49

X

Personal Assistant

File Groceries Help

Add Item Edit Item Delete Ikemn Update To-Buy List

1, Estimates | 2. Items | 3. To-Buy |4. Map || 5. Directions

Skare Mame Latitude Longitude
Italian Bread 16 oz 42,244115 -71.628591
Eggland's Best Large White Eqgs 42,323636 -71.798055

Figure 10: To-Buy list tab

user can move the map around and zoom in and out just like a real map.
Furthermore, the API can also display satellite imagery instead of the map,
making it a truly interesting application.

Due to its wide availability, the Google Maps API was used for mapping
the store locations and displaying the directions. We did, however, run into
several obstacles concerning the licensing of the API which is intended to
be used by web sites and not standalone applications. There are no ways of
displaying the maps through special map widgets, and there are no native
Java bindings (although there are a few projects that attempt to make such
a binding, none of them are production quality).

The final solution was convoluted and far from elegant, but worked ex-

ceptionally well. We added a Browser object to the Map and Directions tabs.

4 IMPLEMENTATION 50

Personal Assistant

File Groceries Help

Add Item Edit Item Delete Item Update To-Buy List

l_lEimatesJ]_Z Items 'I 3. Tol Buy 4, Map |5 Dlrectlons| _ |

Figure 11: Map tab

When the tabs are made active, the GMapGenerator (see section 3.3.2) writes
a file that contains pure client-side Javascript code. The Browser object is
then instructed to display this file. From Google’s perspective, this is just

like looking at an offline page.

4.2 Traveling Salesman problem

Having a list of the best deals on certain items and the location of the stores
where they are available is no doubt convenient. Yet it still leaves out some
decision-making on the user’s side: which store to go to first? In order to
relieve the user from this extra burden, we implemented a solution of the
traveling salesman problem (TSP). For this application, the problem takes
the form of finding the shortest route (cycle) that visits all the stores in the

4 IMPLEMENTATION 51

Personal Assistant |

File Groceries Help

Add Item Edit Item Delete Item Update To-Buy List

]LEstimates 2, Ttems | 3. To-Buy | 4, Map | 5. Directions |_

Figure 12: Directions tab

area. The shortness is measured by the distance between the stores.

The TSP is known for being NP-hard in the number of vertices. Based
on the design decisions concerning the feeble processing power of portable
devices (see section 3.1.2), we needed to find an appropriate way for solv-
ing this problem. Luckily, we could use some approximations and greedy
algorithms to reduce the complexity of the problem. The number of stores
that a user will want to visit in any given day is another factor that helps to
simplify the algorithm: realistically, nobody would visit more than 10 stores.

In this implementation, the vertices of the graph in which we are trying
to find a cycle correspond to coordinates on a sphere. By simplifying the
reference object from a sphere to a plane, we can make use of the triangle

inequality. The shortest distance between two points is a straight line, and in

4 IMPLEMENTATION 52

a triangle on the plane, the sum of the length of two sides will always be larger
than the length of the third side. Making this assumption allows us to use
the Minimum Spanning Tree (MST) of the graph in order to find the shortest
cycle. Without the triangle inequality, a polynomial-time approximation does
not exist unless P = NP.

Out of the several possible implementation of the MST, we used Prim’s
algorithm, the details of which can be found in [CLRCO01| . For the purpose
of this section, it is sufficient to know that this algorithm yields the MST of
a graph in total time O(E1lg V') and V is the number of vertices (stores) and
E is the number of edges (in our graph, all vertices have edges with each
other). Once the MST is found, the shortest path can be found in ©(V?)

time.

4.3 Server-side: Web services

The application is designed using the client-server model. The GUI running
on the mobile platform constitutes the client-side. Although most of the
processing is done on it, no data is stored. The evident advantage of this is
in terms of storage space. Portable devices do not have much storage space
on them, and they are therefore not very appropriate for storing a lot of
information. The server on the other hand is a faster computer. It may have
virtually unlimited amount of storage space thanks to server farms that are
dividing the load to several computers.

The other advantage of delegating the data to a server has to do with
synchronization. Having the price information locally would speed up the
access time, but that data needs to be updated regularly in order to reflect
the latest set of data. If an update is missed for any reason (i.e., unavail-
able Internet connection), the user may be presented with wrong kind of

information. The client-server model is therefore beneficial for this program.

4 IMPLEMENTATION 93

4.3.1 Price-providing web service

Initially, the intention was to find a web service that offered price and store
location information. After much research (see section 2.8), such a service
could not be found. Not only were there no comparison shopping site that
offered such a service, but even the grocery stores themselves did not publish
their weekly pamphlets through the SOAP interface.

4.3.2 Custom web service

We decided to create our own service just for the sake of this project. This
job had two parts to it. There was first the step of gathering the data was
going to be stored. The items that were on sale and the store location had to
be obtained and saved in a database. Once the data was available, it needed
to be offered to the client.

Data collection The information about the deals were gathered by parsing
the web page of a certain grocery store. For the purpose of data collection,
several Perl scripts were written (see section2.9). This step has been per-
formed for the Price Chopper as a proof-of-concept, but can be repeated for
any other web site.

The Perl scripts are responsible for fetching the HTML page, parsing the
tree structure and extracting the prices and the kinds of deals available. The
process is repeated for each store, and a geo-location lookup is performed to
convert the addresses of the stores into absolute coordinates.

Once collected, the data is stored in a MySQL server (see section 2.10)
through the use of INSERT queries. The database server speeds up the stor-
age and access times because it is optimized for quickly fetching and indexing
the data. Furthermore, almost all programming languages (including Java
and Perl) have interfaces to the Open Database Connectivity (ODBC) API

for easily manipulating data in a database.

4 IMPLEMENTATION 54

Data publishing Once the data was obtained, and inserted in a database,
it needed to be served by a web service. We consulted several books on the
topic, including a few especially oriented for web services with Java. For
simple tasks, the steps needed to follow seem trivial. One creates a WSDL
file that describes the interface of the web service to the outside, then uses
a WSDL2Java converter tool (see 2.5.3) to convert it to Java stub classes,
and finally modifies the classes to include the logic. We went through this
sequence with only minor obstacles, and created a simple web service that
takes two strings as an input, and returns their concatenation.

Equipped with this background information, we went tried to generate
the actual, full-blown web service. Yet we got stuck on the very first step,
that of creating a WSDL file. The structure of the WSDL file was not clear
as to how to define arguments of the service, since in this case they were
not simple types like strings or integers, but objects and arrays of objects.
Since WSDL files are by design platform-independent, one could not use Java
object and classes in that file.

After some research and diving into another, more recent book, [Han07],
we discovered that we weren’t the only ones to think that designing web
services was easy only for simple tasks, but overly-complicated for real-world
applications, insomuch as they were completely redesigned with the latest
release of Java.

Collectively called the “Java Web Services” (JWS) platform, there are four
new technologies that make up an easier model for web service development.
These are JAX-WS 2.0, JAXB 2.0, WS-Metadata 2.0 and Web Services for
J2EE 1.2 (WSEE). These different modules are very new, and were first
released with Java EE 5 and Java SE 6.

With all these new standards to master, and only limited time to the
deadline, it became clear that web services weren’t a feasible solution for
this project. The lacking adoption in the industry is yet another proof that

the standards are more complicated than they should be.

4 IMPLEMENTATION 39

The alternative to SOAP services, REST-based web services, are becom-
ing more popular and widespread due to their ease of use. They work by
transferring XML files that do not have to abide by any standards. The
server and the client are responsible for generating and parsing the XML file.
As a result of this increase in flexibility, quicker development is possible with
REST services, making them a promising standard for business-to-business

communications.

4.4 Server-side: Database only back-end

Seeing as the Web Service alternative was not viable, the other remaining
solution was to directly use a database connection from the client. We used
the MySQL server for this case. This approach also has its pros and cons.

One big disadvantage is that it does not allow for any business logic to
be incorporated on the server side. Database queries use the SQL language,
which is very powerful and efficient for accessing and modifying the data.
However its programming capabilities are severely limited, and does not go
beyond that of arithmetic or simple string manipulation. If we had used
a Web Service interface, we would have been able to incorporate code to
do anything that a full featured programming languages allows one to do.
Moreover, web services are language and platform-independent. The logic
could have been implemented in the language that would best accommodate
the job. A service that deals with text strings could have been written in
Perl, while a service that did a lot of numerical computation could have been
written in C with the appropriate libraries.

Another disadvantage of using databases surfaces when dealing with the
security of the system. In general, it is usually not a very good idea to provide
third-party users accounts to the database. Although MySQL supports a
very sophisticated access granting system, the entirety of the server is still
exposed to the outside world. On most systems that adopt the client-server

model, a structure called an n-tier or multi-tier structure is used (see figure

4 IMPLEMENTATION 56

13 for an example of a 3-tier architecture). The basic premise of this setup
is flexibility and security.

The system is flexible because the whole complexity of the system is
hidden behind one computer that works as an interface. Any number of
additional servers can be present behind that. A load-balancing server can
route the traffic to a number of other servers, preventing the connection to
stall due to all the users accessing one of the servers.

In terms of security, this architecture relieves the data tier from providing
the security. Instead, the logic framework can work on securing the system by
checking for access privileges during authentication. The logic tier is usually
handled by application servers (like Apache Tomcat) that are built to run on
security-sensitive applications.

In our structure, the database needs to check the password of the appli-
cation and give them the appropriate privileges. For instance, the client-side
program only has read-only access to the price data, whereas the Perl script
has to have write access when updating the price values. These access rules
can be implemented in MySQL through the privilege granting mechanism.

It is nevertheless not an ideal implementation.

4 IMPLEMENTATION

Presentation tier

The top-most level of the application is the
user interface. The main function of the
interface is to translate tasks and results to
something the user can understand.

Logic tier

This layer coordinates the application, Y

processes commands, makes logical GET LIST OF ALL ADD ALL SALES
decisions and evaluations, and performs SALES MADE TOGETHER
calculations. It also moves and processes LAST YEAR

data between the two surrcunding layers.

SALE 1
QUERY SALE 2
- SALE 3
Data tier SALE 4
Here information is stored and retrieved
from a database or file system. The
information is then passed back to the logic
tier for processing, and then eventually
back to the user.
e e
oy
Storage

Database

Figure 13: Example three-tier application

o7

5 EVALUATION/TESTING 58

5 Evaluation/Testing

The application once completed, we went back to the design goals established
in section 3.1 to check if they have been fulfilled. As a reminder, those goals

were
e Use of localization

e Mobile Platform

e Provide unique service

Whereas the first two of these requirements are technical in nature, the last
one is more subjective. The evaluation of the system will therefore be done
in two stages. The technical characteristics will be looked at first, and the

usability testing will be done by a third person.

5.1 Technical testing
5.1.1 Platform dependent specifications

We explained in section 3.1.2 that the program running on a mobile platform
introduced many constraints. Most of these have been addressed by the
implementation. For instance, the entire user interface has been made such
that most of the screen is used to display data; only the three rows at the
top are used for user interactions.

The program itself is kept very lightweight in order to reduce the load on
the processor. Most of the computations are done on the server side, except
for the routing algorithm (see next subsection). The data is also exclusively

stored on the server. Only the regular list of items to buy is stored on the

5.1.2 Algorithm implementation testing

The traveling salesman algorithm is at the heart of the routing function.

When the user selects the stores he needs to visit, this algorithm is respon-

5 EVALUATION/TESTING 59

| Number of Vertices | Execution time (ms) |

10 10
100 10
1000 110
5000 2173
10000 8512
15000 18887
20000 33538
25000 53968
30000 76591
35000 107064
40000 139380

Table 1: Complexity tests for the Traveling Salesman algorithm

sible for finding the shortest route that visits each point. As explained in
section 4.2 and in [CLRCO1|, we use an approximation that uses the tri-
angle inequality, and therefore the complexity of the algorithm should be
©(V?), where V is the number of vertices. In order to test this value, and to
evaluate how well our own implementation works, we ran some benchmark
tests. We ran the same algorithm in an isolated test bench (i.e., without
running the rest of the GUI) by varying the number of vertices. The values
for the coordinates of each vertex was obtained randomly using Java’s native
java.util. Random generator. The result of the test is shown in table 1. A
graph of the same results can be found on figure 14.

The graph shows that the complexity grows quadratically. Although this
is still not perfect, it agrees with the theoretical results. It is also worth noting
that the algorithm uses a greedy approach, and therefore is not guaranteed
to give the optimal route. Nevertheless it is optimum enough to be run on

mobile platforms even for large number of stores.

5 EVALUATION/TESTING 60

Complexity of the Traveling Salesman a gorithm

140000
120000
100000
0
£
[
E 80000
c
S
S 60000
(8]
Q
X
w
40000
- //
20000 /)
ol
0 5000 10000 15000 20000 25000 30000 35000 40000

Number of vertices

Figure 14: Time complexity of our implementation of the Traveling Salesman
algorithm

5.2 Usability testing

The target audience of this project being the common shopper, its usability
should be tested by somebody who does not have any knowledge of how the
system works. Ideally, the person should not have an understanding of the
various technologies employed, such as localization, the database back-end
or even Google Maps.

We found such a volunteer to perform the tests. He is a senior under-
graduate student at WPI who is majoring in biochemistry. Although he uses
computers regularly, his usage does not go beyond that of checking his e-mail
and composing documents with basic office tools. He therefore does not have
any programming background. He is, however, truly interested in the system
and what it had to offer. A test session was set up and structured in the

following way.

5 EVALUATION/TESTING 61

The person was briefly introduced to the purpose of the program. This
introduction was very superficial, and did not cover any directions on how to
use the application, but it instructed the person as to what it was supposed
to do. Later, a three sentence help text was shown. This text was meant to
be very short so that it could be placed on a “Welcome” dialog box displayed
when the application is first started. The interactions of the person with the
system were then observed.

It took the person merely three minutes to understand the process. The
numerals on the tabs were especially helpful in guiding the user. He un-
derstood that he had to start from the first tab, and move on to the fifth.
Most of his time was spent on the second tab, that deals with the creation
of a base list for the groceries. One source of confusion was the expanding
list items. He failed to realize quickly that upon expansion, the lookup was
performed with the database. Another obstacle was that of adding items to
the “To-Buy” list using the toolbar item. The user had to go back and forth
between the tabs until he realized what needed to be done. The relationship
between the name of the third tab (“To-Buy list”) and the label of the button
(“Update To-Buy list”) was a good hint.

Once the To-Buy list was formed, the rest of the steps followed swiftly.
The person first looked at the map that showed the location of the stores,
and finished up by looking at the directions tab.

All in all, the system was shown to be user-friendly. The learning curve
for the program is under five minutes with only minor explanations. There
are, however, several points that may need some improvement. For instance,
the lookup of the items may be performed on a different screen, instead
of expanding list items. Although this would be clearer to the user, that
approach would also be more costly in terms of screen space. It is therefore
a trade-off between usability and functionality. A status line that guides the
user’s actions would also be speed up the interactions. The software would

then be similar to a wizard.

6 FUTURE WORK 62

6 Future Work

Although we feel that the design goals we set initially were largely achieved,
we believe that the program can still be improved further. Several interesting
features could not be explored due to the timing constraints and several tech-
nical hurdles. These features range from quick improvements of the current

system to larger ideas that may be interesting.

6.1 Improvements to the current system

The only major improvement to the current system would be the implementa-
tion of the web services. We strongly believe that they are the ideal medium
to implement a client /server structure such as this one. Furthermore, once
the service is in place, the data can be used for a variety of other applications
with minimal effort. The platform independence of the system would allow
web applications to access the price information just as desktop or mobile
applications.

In section 5, we have found several points where the current graphical
interface was lacking. The GUI may need some minor improvements to make
it more user-friendly. For instance, the directions tab may be modified to
show the textual, turn-by-turn directions already supported by the Google
Maps API. Text labels on the tabs can be replaced by graphics to make them
more descriptive and visually appealing. Contextual help messages may be
added to guide the user throughout the process.

The underlying logic of the system can also be improved to make it better
more intelligent. Currently, the user needs to browse through the available
deals for the selected items, and make a judgment as to which one to buy.
When making this judgment, the user needs to consider such factors as his
time availability, the distance to the store and the attractivity of the deal.
Ideally, these decisions can be made by the software itself, further reducing

the burden on the user.

6 FUTURE WORK 63

6.2 Follow-up ideas

One of the latest trends in the Internet is the advent of social networking.
With sites such as Facebook.com or MySpace.com, people can interact with
each other in completely new ways. A possible idea that may be worth
investigating would be to create a companion web site to this software that
will allow the users to input their own price information and create a kind
of social network around grocery shopping.

The working of the software can be very straightforward. When a shopper
finds a deal in a store, he will input the price and location of the item in
the database. These user submitted data will complement the data that is
coming from the web service. Once the database is updated, other users
can see the localized deals on their Personal Assistant program just like the
regular information. The system can be made more dynamic by allowing
users to rate the deals, and flag them as expired.

Another path that is worth following is to expand the coverage of the
system to more than just groceries. As of now, the software works only for
grocery store. However, the location information can be used and applied to
any kinds of stores. These may be technology stores, department stores or
even hairdressers and gas stations. Since the code has been developed with

extensibility in mind, the utility of the system can be easily increased.

7 CONCLUSION 64

7 Conclusion

Working on such a large-scale project in such a short amount of time taught
us a lot of things, one of which is the importance of software engineering
principles when working on big projects. Object oriented design made the
development of this product run much smoothly. It may not have been
possible to obtain similar results using C.

The importance of importance of code reuse and abstraction was also
made apparent. We used a lot of different technologies, and tried to reuse
libraries as much as possible. When working on integration projects like this
one, it really does not make sense to duplicate the effort of re-writing a part
that has already been implemented. The point of the project should be to
make it such that the value of the system is larger than the sum of its parts.
In other words, what you do with these many blocks is more important than
implementing them yourself.

One final conclusion is regarding the state of the Web Services. We
strongly believe that they are harder than they should be, which is ham-
pering their adoption in the industry. Although they were advertised to be a
revolutionary technology that would reshape how business-to-business logic
was going to work, we found that they did not live up to the expectations.
After experimenting with the technologies, I found out that the main reason
behind the lack of adoption is in the difficulty of developing them quickly.
SOAP-based web services are inherently hard to work with, which makes

other alternatives such as REST-based services more attractive.

REFERENCES 65

References

[Act]

[CLRCO1]

[GHJIV93]

[Han07]

[HCO4|

[Knu92|

[Loo]

[Mee|

[New(2]

[Plaal

[Plab]

Explorations in community-oriented ubiquitous computing.

http://activecampus.ucsd.edu/. Accessed March 17, 2008.

Thomas H. Cormen, Charles E. Leiserson, Ronald .. Rivest, and
Stein Clifford. Introduction to Algorithms. The MIT Press, 2001.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design patterns: Abstraction and reuse of object-oriented design.
Lecture Notes in Computer Science, 707:406 431, 1993.

Mark D. Hansen. SOA using Java Web Services. Prentice Hall,
2007.

Kevin Hemenway and Tara Calishain. Spidering Hacks. O‘Reilly,
2004.

D.E. Knuth. Two notes on notation. Amer. Math. Monthly,
99:403 422, 1992.

Loop - Your Social Compass http://www.loopt.com. Accessed
March 17, 2008.

Meetro.com http://www.meetro.com. Accessed March 17, 2008.

Eric Newcomer. Understanding Web Services. Addison-Wesley
Professional, 2002.

Place LLab Hardware Compatibility List. http://www.placelab.
org/toolkit/hcl.php. Accessed March 17, 2008.

Projects using Placel.ab http://www.placelab.org/projects.
Accessed March 17, 2008.

REFERENCES 66

[Sky]

[Soc|

[WCL*05]

[WiF|

SkyHook Wireless. www.skyhookwireless.com. Accessed March
17, 2008.

Socialight.com. http://www.socialight.com. Accessed March
17, 2008.

Sanjiva Weerawarana, Francisco Curbera, Frank Leymann, Tony
Storey, and Donald F. Ferguson. Web Services Platform Archi-
tecture. Prentice Hall, 2005.

Wi-Fi Map of the World. Troy Dreier. http://www.
wi-fiplanet.com/news/article.php/3723366. Accessed
March 17, 2008.

A PLACELAB INSTALLATION UNDER ECLIPSE 67

A PlaceLab Installation under Eclipse

This section will show you how to import the Place Lab source code in
Eclipse, both for using in a different project, and also for running. These

instructions have been tested on Eclipse 3.3 running on Windows XP.

1. Download the Placelab toolkit from http://www.placelab.org. At
the time of this writing, the most current version is

placelab-win32-2-.1.zip

2. Under Eclipse, create a new project by selecting “File > New > Java

Project,” and name the new project “PlaceLab” (see figure 15).

3. Click on “File > Import,” and under the “General” heading, choose
“Archive File.” After pressing next, select the download archive file
using the browse button, and pick the just created PlaceLab project in
the “Into folder” textbox (figure 16) . Click Finish to import.

4. Once the import is finished, you need to move the contents of the “src”
folder under “placelab-win32” to Eclipse’s default “sr¢” folder. This can

be done by dragging and dropping all the Java files.

5. The next step is to configure the build path. Right-click on the newly
created project and go to “Build Path > Configure Build Path.” The
JAR files that came with Placel.ab need to be included as dependencies.
Under the “Libraries” tab, add each of the items shown on figure 17
using the “Add JARs” and “Add External JARs” buttons. The SWT

related libraries can be found under the Eclipse’s plugins directory.

6. One the same screen, click “Add Class Folder” and include the “native”
folder that came with PlaceLab (see figure 18).

7. You can now right-click on any of the demo applications (for instance
org.placelab.demo.apviewer.ApViewer and run it by selecting “Run as”

> “Java Application.”

A PLACELAB INSTALLATION UNDER ECLIPSE

& New Java Project

Create a Java project e
Create a Java project in the workspace or in an external location,

Project name: | PlaceLabl |

Contents

lG}Create new project in workspace

O Create project from existing source

JRE
(&) Use default JRE {Currently ‘jrel 6,0_04") Configure defaulk.. .
O Use a project specific JRE:

O Use an execution environment JRE:

Project layout

() Use project Folder as root For sources and class files

(3) Create separate Folders For sources and class Files Configure defaulk...

Working sets

[add project to warking sets

L) [Mext = H Finish H Cancel

Figure 15: Creating a new project

A PLACELAB INSTALLATION UNDER ECLIPSE

= Import

Archive file

Import the contents of an archive file in zip or tar format From the local File system,

From archive file: | CiiDocuments and Settings\BerkiDeskiopiplacelab-win3z-2. 1.2ip

|[Browse...]

H P

[Filter Iypes...] [Select all] [Deselect All]

Into folder: | FlaceLab

|[Browse...]

|:| CQwerwrite existing resources withouk warning

@ wet = [Fiish

J[Cancel]

Figure 16: Importing the ZIP file

69

A PLACELAB INSTALLATION UNDER ECLIPSE 70

& Properties for Placelab

T e .
\tvpe Filker bext | Jawva Build Path

-~ Resource | === = fr— = =

- Builders ||_5 Source | = Prajects | B Libraries | &’\} Order and Export |

- Java Build Path JARs and class Folders on the build path:

[#-] Code Syl T

gj J::: sze ilery 3 [# g, BlueCove.jar - C\Documents and SettingsiBerkiworkspacelPlacelabllib Add JARs. .,

ke i -) hsoldb jar - PlaceLabylib

- THACE PrHaRe F jdbm-0.12.jar - C:\Documents and SettingsiBerkiworkspacePlacelabllib

‘. Javadoc Location i !‘:I jface.jar - C:\Documents and Settings\Berkiworkspace!PlaceLabllib fdd Variable,..

- Profile Compliance and Walidatic #-g) openhash.jar - ChDocuments and Settings\Berkiworkspace\PlaceLabllib

- Project References & ﬂ:‘ Add Library. ..

- Refactoring History E2 N

- RunDebug Settings [iTI placelab.jar - Placelab/lib AddplesRolen

- Server) PUnkime, jar - C:iDocuments and Settings\Berkiworkspace\FlaceLabllib

- Task Repositary s FTacomm,jar - CiiDocuments and Settings\BerkiworkspacelPlacelabllib

Task Tags %, seriestl.zip - C\Documents and Settings\BerkiworkspacePlacel abfib

validation g swt.jar - C\Documents and Settings\Berkiworkspace!Placelabylib —

~Web Content Settings B JRE Syskern Library [jrel.6.0_04]
Migrate JAR File. ..

Sl S| |

)
]
=

] [Cancel

Figure 17: Setup the Build Path

- Properties for Placelab

- Resource
- Builders
- Java Build Path
#- Java Code Style
- Java Compiler

[Java Editor

- JawaZC options

- Javadot Location
- Profile Compliance
- Project Reference
- Refactaring Histo
- RunjDebug Settin
- Task Repositary

- Task Tags

- Walidation

& Class

Folder Selection

Choose class Folders to be added to the build path:

=

=8

= [w

1= placelab-win3z
& [docs

B O Ib

& [#] (= native

i [placelabdata
#-] run
E[=r

&[] ot

& stc

Create Mew Folder...

K J[Cancel]

A PLACELAB INSTALLATION UNDER ECLIPSE

plugi
WwIBE]

5

Ll 1ilh

add 1aRs...
Add Yariable. ..
Add Library. .,

Add Class Folder. ..

Edit.,.

Remove

[igrate J4R File. ..

o

3 J [Canicel

Figure 18: Setup the class folder for “native”

71

B RUNNING PERSONAL ASSISTANT UNDER ECLIPSE 72

B Running Personal Assistant under Eclipse

This section details how to run the Personal Assistant program within Eclipse
for either running standalone or for further development. Since the file has
been packaged using Eclipse’s export function, the user only needs to do an

import to recover the state of the project.

1. Open Eclipse, and follow the steps outlined in appendix A to import
the PlaceLab library.

2. Go to “File > Import” and pick “General > Existing Project into
Workspace”

3. On the next screen, activate the “Select archive file” radio button, and
click browse to locate the personalassistant.zip that is found in the

accompanying CD, under the Source directory (see figure 19).

4. Once the project is loaded, right-click on the JFaceGUI class under
the package org.personalassistant.gui and select "Run as > Java

Application.”

B RUNNING PERSONAL ASSISTANT UNDER ECLIPSE

= Import ajx
Import Projects
Seleck a directory to search For existing Eclipse projects.
-
() Select rook directary: | | Browse, ..
() Select archive File: | Ci\Dacuments and Settings)BerkiDesktopiper: | [Browse. ..]
Projects:

----- Personal Assistant Select Al
Deselect all

Copy projects inko workspace

@ Mext= | | Finish I[Canicel]

Figure 19: Importing the project

73

B RUNNING PERSONAL ASSISTANT UNDER ECLIPSE

74

I5)

C BRAINSTORMING MIND MAP

VWS

=7 e N
22N TR\

1~wnw\ T/

, INYID AT D
@jﬁo,ow@@t@o

C Brainstorming mind map

